(Ⅰ)求a的值;
(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;
(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X表示身高在180cm以上的男生人数,求随机变量X的分布列和数学期望EX.
(Ⅰ)求证:A1F⊥BE;
(Ⅱ)线段A1B上是否存在点Q使得FQ∥平面A1DE?若存在,求出A1Q的长,若不存在,请说明理由;
(Ⅲ)当 时,求直线GQ与平面A1DE所成角的大小.
(Ⅰ)求椭圆W的标准方程;
(Ⅱ)点M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点.直线AE与直线y=﹣1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.
(Ⅰ)当a=1时,求函数F(x)=f(x)﹣g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.
①a1=m(m∈N*);②an≤n﹣1(n≥2);③n是a1+a2+…+an的因数(n≥1).
(Ⅰ)当m=5时,写出数列{an}的前五项;
(Ⅱ)若数列{an}的前三项互不相等,且n≥3时,an为常数,求m的值;
(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,an为常数.