当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年高考数学真题试卷(上海卷)

更新时间:2017-09-18 浏览次数:560 类型:高考真卷
一、填空题
二、选择题
三、解答题
  • 17. (2017·上海) 如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.

    1. (1) 求三棱柱ABC﹣A1B1C1的体积;
    2. (2) 设M是BC中点,求直线A1M与平面ABC所成角的大小.
  • 18. (2017·上海) 已知函数f(x)=cos2x﹣sin2x+ ,x∈(0,π).
    1. (1) 求f(x)的单调递增区间;
    2. (2) 设△ABC为锐角三角形,角A所对边a= ,角B所对边b=5,若f(A)=0,求△ABC的面积.
  • 19. (2017·上海) 根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an和bn(单位:辆),其中an= ,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
    1. (1) 求该地区第4个月底的共享单车的保有量;
    2. (2) 已知该地共享单车停放点第n个月底的单车容纳量Sn=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?
  • 20. (2017·上海) 在平面直角坐标系xOy中,已知椭圆Γ: =1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点.

    1. (1) 若P在第一象限,且|OP|= ,求P的坐标;

    2. (2) 设P( ),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;

    3. (3) 若|MA|=|MP|,直线AQ与Γ交于另一点C,且 ,求直线AQ的方程.

  • 21. (2017·上海) 设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).
    1. (1) 若f(x)=ax3+1,求a的取值范围;
    2. (2) 若f(x)是周期函数,证明:f(x)是常值函数;
    3. (3) 设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.

微信扫码预览、分享更方便

试卷信息