当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省成都市成华区2020年中考数学一模考试试卷

更新时间:2024-07-13 浏览次数:227 类型:中考模拟
一、选择题
二、填空题
三、计算题
四、综合题
  • 17. (2020九上·会宁期中) 某校调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图,根据图中提供的信息,完成以下问题:

    1. (1) 本次共调查了名家长;扇形统计图中“很赞同”所对应的圆心角是度.已知该校共有1600名家长,则“不赞同”的家长约有名;请补全条形统计图
    2. (2) 从“不赞同”的五位家长中(两女三男),随机选取两位家长对全校家长进行“学生使用手机危害性”的专题讲座,请用树状图或列表法求出选中“1男1女”的概率.
  • 18. (2020·成华模拟) 小明想测量湿地公园内某池塘两端A,B两点间的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=40°,再向前行走100米到点D处,测得∠BDF=52.44°,若直线AB与EF之间的距离为60米,求A,B两点的距离(结果精确到0.1)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin52.44°≈0.79,cos52.44°≈0.61,tan52.44°≈1.30)

  • 19. (2020·成华模拟) 如图,一次函数y=﹣x+3的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.

    1. (1) 求反比例函数的解析式及点A的坐标;
    2. (2) 若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.
  • 20. (2020·成华模拟) 在△ABC中,BC=6,S△ABC=18,正方形DEFG的边FG在BC上,顶点D,E分别在AB,AC上.

    1. (1) 如图1,过点A作AH⊥BC于点H,交DE于点K,求正方形DEFG的边长;
    2. (2) 如图2,在BE上取点M,作MN⊥BC于点N,MQ∥DE交AB于点Q,QP⊥BC于点P,求证:四边形MNPQ是正方形;
    3. (3) 如图3,在BE上取点R,使RE=FE,连结RG,RF,若tan∠EBF= .求证:∠GRF=90°.
  • 21. (2021九上·长沙期中) 若方程x2﹣2x﹣4=0的两个实数根为α,β,则α22的值为
  • 22. (2020·成华模拟) 第一象限的点A(a,b)和它关于x轴的对称点B分别在双曲线y= 和y= 上,则k1+k2的值为
  • 23. (2020·成华模拟) 如图电路中,随机闭合开关S1 , S2 , S3 , S4中的两个,能够点亮灯泡的概率为

  • 24. (2020·成华模拟) 如图,把矩形ABCD沿EF,GH折叠,使点B,C落在AD上同一点P处,∠FPG=90°,△A′EP的面积是8 ,△D′PH的面积是4 ,则矩形ABCD的面积等于

  • 25. (2020·成华模拟) 规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若MN的坐标分别为 P是二次函数 的图象上在第一象限内的任意一点,PQ垂直直线 于点Q , 则四边形PMNQ是广义菱形.其中正确的是.(填序号)
  • 26. (2020·成华模拟) 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:

    x(元)

    190

    200

    210

    220

    y(间)

    65

    60

    55

    50

    1. (1) 根据所给数据在坐标系中描出相应的点,并画出图象。
    2. (2) 求y关于x的函数表达式、并写出自变量x的取值范围.
    3. (3) 设客房的日营业额为w(元)。若不考虑其他因素,问宾馆标准房的价格定为多少元时。客房的日营业额最大?最大为多少元?
  • 27. (2020·成华模拟) 如图,在正方形ABCD中,AB=6,点E在对角线BD上,DE=2 ,连接CE,过点E作EF⊥CE,交线段AB于点F

    1. (1) 求证:CE=EF;
    2. (2) 求FB的长;
    3. (3) 连接FC交BD于点G.求BG的长.
  • 28. (2020·成华模拟) 已知抛物线y=ax2+bx+3与x轴分别交于点A(﹣3,0),B(1,0)交于点C,抛物线的顶点为点D.

    1. (1) 抛物线的表达式及顶点D的坐标.
    2. (2) 若点F是线段AD上一个动点,

      ①如图1,当FC+FO的值最小时,求点F的坐标;

      ②如图2,以点A,F,O为顶点的三角形能否与△ABC相似?若能,求出点F的坐标;若不能,请说明理由.

微信扫码预览、分享更方便

试卷信息