当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省南通市启秀中学2020年数学中考模拟试卷

更新时间:2020-07-19 浏览次数:246 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:
    2. (2) 化简:
  • 20. (2020·南通模拟) 解方程组和不等式组:
    1. (1)
    2. (2)
  • 21. (2021·徐州模拟) 为了改善生态环境,某乡村计划植树4000棵.由于志题者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?
  • 22. (2020·南通模拟) 在一个不透明的盒中有m个黑球和1个白球,这些球除颜色外无其他差别.
    1. (1) 若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到黑球的频率稳定在0.75左右,则m的值应是
    2. (2) 在(1)的条件下,用m个黑球和1个白球进行摸球游戏.先从盒中随机摸取一个球,再从剩下的球中再随机摸取一个球,求事件“先摸到黑球,再摸到白球”的概率.
  • 23. (2020·南通模拟) 解答下列问题:已知关于 的方程
    1. (1) 为何值时,方程无解?
    2. (2) 为何值时,方程的解为负数?
  • 24. (2020·溧阳模拟) 京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).

  • 25. (2020·南通模拟) 如图,边长为1的正方形ABCD中,点E、F分别在边CD、AD上,连接BE、BF、EF,且有AF+CE=EF.

    1. (1) 求(AF+1)(CE+1)的值;
    2. (2) 探究∠EBF的度数是否为定值,并说明理由;
  • 26. (2020·南通模拟) 某地政府计划为农户购买农机设备提供补贴.其中购买Ⅰ型、Ⅱ型设备农民所投资的金额与政府补贴的额度存在下表所示的函数对应关系.


    型号

    金额

    Ⅰ型设备

    Ⅱ型设备

    投资金额x(万元)

    x

    5

    x

    2

    4

    补贴金额y(万元)

    y1=kx(k≠0)

    2

    y2=ax2+bx(a≠0)

    2.8

    4

    1. (1) 分别求y1和y2的函数解析式;

    2. (2) 有一农户共投资10万元购买Ⅰ型、Ⅱ型两种设备,两种设备的投资均为整数万元,要想获得最大补贴金额,应该如何购买?能获得的最大补贴金额为多少?

    1. (1) 如图,已知△ABC中,D、E分别是AB、AC的中点,求证:DE∥BC,DE= BC.

    2. (2) 利用第(1)题的结论,解决下列问题:

      ①如图,在四边形ABCD中,AD∥BC,E、F分别是AB、CD的中点,求证:EF∥BC,FE= (AD+BC)

      ②如图,在四边形ABCD中,∠A=90°,AB=3 ,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,求EF长度的最大值.

  • 28. (2021·苏州模拟) 在平面直角坐标系xOy中,⊙C的半径为r(r>1),P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:若直线CP与⊙C交于点A,B,满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图为⊙C及其“完美点”P的示意图.

    1. (1) 当⊙O的半径为2时,

      ①在点M ,N(0,1),T 中,⊙O的“完美点”是

      ②若⊙O的“完美点”P在直线y= x上,求PO的长及点P的坐标;

    2. (2) ⊙C的圆心在直线y= x+1上,半径为2,若y轴上存在⊙C的“完美点”,求圆心C的纵坐标t的取值范围.

微信扫码预览、分享更方便

试卷信息