当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省德州市2020届高三数学第一次(4月)模拟考试试卷

更新时间:2024-07-13 浏览次数:193 类型:高考模拟
一、单选题
二、多选题
  • 9. (2020高一下·滨州期末) 某市教体局对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A,B,C,D,E五个层次内,根据抽样结果得到统计图表,则下面叙述正确的是(    )

     

    A . 样本中女生人数多于男生人数 B . 样本中B层人数最多 C . 样本中E层次男生人数为6人 D . 样本中D层次男生人数多于女生人数
  • 10. (2020·德州模拟) 1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为 ,下列结论正确的是(    )

    A . 卫星向径的取值范围是 B . 卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间 C . 卫星向径的最小值与最大值的比值越大,椭圆轨道越扁 D . 卫星运行速度在近地点时最大,在远地点时最小
  • 11. (2020·德州模拟) 已知函数 ,下列命题正确的为(    )
    A . 该函数为偶函数 B . 该函数最小正周期为 C . 该函数图象关于 对称 D . 该函数值域为
  • 12. (2020·德州模拟) 如图,已知点 的边 的中点, 为边 上的一列点,连接 ,点 满足 ,其中数列 是首项为1的正项数列, 是数列 的前n项和,则下列结论正确的是(    )

    A . B . 数列 是等比数列 C . D .
三、解答题
  • 13. (2020·德州模拟) 某校三个兴趣小组的学生人数分布如下表(每名学生只参加一个小组,单位:人).

    篮球组

    书画组

    乐器组

    高一

    45

    30

    a

    高二

    15

    10

    20

    学校要对这三个小组的活动效果进行抽样调查,用分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,求a的值.

  • 14. (2020·德州模拟) 已知数列 的前n项和为 ,数列 满足
    1. (1) 求数列 的通项公式;
    2. (2) 求 .
  • 15. (2020·德州模拟) 如图,在四棱锥 中, ,E、M分别为棱 的中点, .

    1. (1) 证明:平面 平面
    2. (2) 若二面角 的大小为45°,求直线 与平面 所成角的正弦值.
  • 16. (2020·德州模拟) 已知抛物线 的焦点为F,圆M的方程为: ,若直线 轴交于点 ,与抛物线交于点Q,且 .
    1. (1) 求出抛物线E和圆M的方程.
    2. (2) 过焦点F的直线 与抛物线E交于A、B两点,与圆M交于C、D两点(A,C在y轴同侧),求证: 是定值.
  • 17. (2020·德州模拟) 医院为筛查某种疾病,需要血检,现有 份血液样本,有以下两种检验方式:

    方式一:逐份检验,需要检验 次;

    方式二:混合检验,把每个人的血样分成两份,取 个人的血样各一份混在一起进行检验,如果结果是阴性,那么对这k个人只作一次检验就够了;如果结果是阳性,那么再对这 个人的另一份血样逐份检验,此时这k份血液的检验次数总共为 次.

    1. (1) 假设有6份血液样本,其中只有2份样本为阳性,若采用逐份检验的方式,求恰好经过3次检验就能把阳性样本全部检验岀来的概率;
    2. (2) 假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是相互独立的,且每份样本是阳性结果的概率为 .现取其中 )份血液样本,记采用逐份检验方式,样本需要检验的总次数为 ,采用混合检验方式,样本需要检验的总次数为 .

      ①运用概率统计的知识,若 ,试求p关于k的函数关系式

      ②若 ,且采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.

      参考数据: .

  • 18. (2020·德州模拟) 已知函数 .
    1. (1) 若 ,求函数 处的切线方程;
    2. (2) 讨论 极值点的个数;
    3. (3) 若 的一个极小值点,且 ,证明: .
四、填空题
五、双空题

微信扫码预览、分享更方便

试卷信息