当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省南京市建邺区2020年数学中考一模试卷

更新时间:2020-08-25 浏览次数:237 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 18. (2023七下·西安月考) 已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.
  • 19. (2020·建邺模拟) 数学活动课上,陈老师布置了一道题目:如图,你能用一张锐角三角形纸片ABC折出一个以∠A为内角的菱形吗?

    悦悦的折法如下:

    第一步,折出∠A的平分线,交BC于点D.

    第二步,折出AD的垂直平分线,分别交AB、AC于点E、F,把纸片展平.

    第三步,折出DE、DF,得到四边形AE

    请根据悦悦的折法在图中画出对应的图形,并证明四边形AEDF是菱形.

  • 20. (2020·建邺模拟) 疫情期间的某一天,“建邺云课堂”为学生提供了语文、数学、英语三个学科各一节微课,甲、乙两名同学随机选择一节微课自主学习.
    1. (1) 甲同学选择数学微课的概率是
    2. (2) 求甲、乙两名同学选择同一学科微课的概率.
  • 21. (2023八下·栾城期末) 某校七、八、九年级共有1000名学生.学校统计了各年级学生的人数,绘制了图①、图②两幅不完整的统计图.

    1. (1) 将图①的条形统计图补充完整.
    2. (2) 图②中,表示七年级学生人数的扇形的圆心角度数为°.
    3. (3) 学校数学兴趣小组调查了各年级男生的人数,绘制了如图③所示的各年级男生人数占比的折线统计图(年级男生人数占比=该年级男生人数÷该年级总人数×100%).请结合相关信息,绘制一幅适当的统计图,表示各年级男生及女生的人数,并在图中标明相应的数据.

  • 22. (2020·建邺模拟) 某商场将进价每件30元的衬衫以每件40元销售,平均每月可售出600件.为了增加盈利,商场采取涨价措施.若在一定范围内,衬衫的单价每涨1元,商场平均每月会少售出10件.为了实现平均每月10 000元的销售利润,这种衬衫每件的价格应定为多少元?
  • 23. (2020·建邺模拟) 已知一次函数y1=kx-2(k为常数,k≠0)和y2=x+1.
    1. (1) 当k=3时,若y1>y2 , 求x的取值范围.
    2. (2) 在同一平面直角坐标系中,若两函数的图象相交所形成的锐角小于15°,请直接写出k的取值范围.
  • 24. (2020·建邺模拟) 某校航模小组打算制作模型飞机,设计了如图所示的模型飞机机翼图纸.图纸中AB∥CD,均与水平方向垂直,机翼前缘AC、机翼后缘BD与水平方向形成的夹角度数分别为45°、27°,AB=20cm,点D到直线AB的距离为30cm.求机翼外缘CD的长度.(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51.)

  • 25. (2020·建邺模拟) 如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,过点 D作DE⊥AC,垂足为E.

    1. (1) 求证:DE是⊙O的切线.
    2. (2) 若⊙O的半径为2,∠A=60°,求DE的长.
  • 26. (2020·建邺模拟) 已知函数y=x2+(m-3)x+1-2m(m为常数).
    1. (1) 求证:不论m为何值,该函数的图象与x轴总有两个公共点.
    2. (2) 不论m为何值,该函数的图象都会经过一个定点,求定点的坐标.
  • 27. (2020·建邺模拟) (概念认识)

    若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.

    如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.

     

    1. (1) (初步思考)若等边△ABC的边长为1,则边BC关联的极限内半圆的半径长为.
    2. (2) 如图②,在钝角△ABC中,用直尺和圆规作出边BC关联的极限内半圆(保留作图痕迹,不写作法).
    3. (3) (深入研究)如图③,∠AOB=30°,点C在射线OB上,OC=6,点Q是射线OA上一动点.在△QOC中,若边OC关联的极限内半圆的半径为r,当1≤r≤2时,求OQ的长的取值范围.

微信扫码预览、分享更方便

试卷信息