当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省南通市2020年中考数学试卷

更新时间:2020-08-28 浏览次数:879 类型:中考真卷
一、选择题
二、填空题
三、解答题
    1. (1) (2m+3n)2﹣(2m+n)(2m﹣n);
    2. (2)
    1. (1) 如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.
    2. (2) 如图②,A为⊙O上一点,按以下步骤作图:

      ①连接OA;

      ②以点A为圆心,AO长为半径作弧,交⊙O于点B;

      ③在射线OB上截取BC=OA;

      ④连接AC.

      若AC=3,求⊙O的半径.

  • 21. (2020·南通) 如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点C(1,m),与x轴交于点B.

    1. (1) 求直线l2的解析式;
    2. (2) 点M在直线l1上,MN∥y轴,交直线l2于点N,若MN=AB,求点M的坐标.
  • 22. (2021·佛山模拟) 为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.

    第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.

    两个小组的调查结果如图的图表所示:

    第二小组统计表

    等级

    人数

    百分比

    A

    17

    18.9%

    B

    38

    42.2%

    C

    28

    31.1%

    D

    7

    7.8%

    合计

    90

    100%

    若该校共有1000名学生,试根据以上信息解答下列问题:

    1. (1) 第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;
    2. (2) 对这两个小组的调查统计方法各提一条改进建议.
  • 23. (2020·南通) 某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.

    请用所学概率知识解决下列问题:

    1. (1) 写出这三辆车按先后顺序出发的所有可能结果;
    2. (2) 两人中,谁乘坐到甲车的可能性大?请说明理由.
  • 24. (2021九上·包头月考) 矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.

    1. (1) 如图①,若点P恰好在边BC上,连接AP,求 的值;
    2. (2) 如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.
  • 25. (2021·罗庄模拟) 已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.
    1. (1) 求抛物线的解析式;
    2. (2) 若n<﹣5,试比较y1与y2的大小;
    3. (3) 若B,C两点在直线x=1的两侧,且y1>y2 , 求n的取值范围.
  • 26. (2020·南通) (了解概念)

    有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.

    1. (1) (理解运用)

      如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC=AB,求sin∠CAD的值;

    2. (2) 如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD是否为对余四边形.证明你的结论;
    3. (3) (拓展提升)

      在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设 =u,点D的纵坐标为t,请直接写出u关于t的函数解析式.

微信扫码预览、分享更方便

试卷信息