当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省宜春市高安市2019-2020学年八年级上学期数学期中...

更新时间:2021-01-20 浏览次数:142 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 13. (2024七下·海陵月考) 若一个多边形的内角和比外角和多540°,求这个多边形的边数.
  • 14. (2019八上·高安期中) 如图是雨伞开闭过程中某时刻的截面图,伞骨 AB=AC,支撑杆OE=OF,AB=2AE,AC=2AF.当 O 沿 AD 滑动时,雨伞开闭。雨伞开闭过程中,BAD与∠CAD 有何关系?请说明理由。

  • 15. (2019八上·高安期中) 如图, 中,AD是BC边上的高,AE、BF分别是 的平分线, ,试求 的度数.

  • 16. (2020八上·勃利期末) 如图,在△ABC中,AB=ACAB的垂直平分线分别交ABAC于点DE

    1. (1) 若∠A=40°,求∠EBC的度数;
    2. (2) 若AD=5,△EBC的周长为16,求△ABC的周长.
  • 17. (2019八上·高安期中) 如图,在▱ABCD中,点EAD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)

    1. (1) 在图1中,过点E作直线EF将▱ABCD分成两个全等的图形;
    2. (2) 在图2中,DEDC , 请你作出∠BAD的平分线AM
  • 18. (2021八上·密山期末) 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.

    1. (1) 求证:△BDE≌△CDF;
    2. (2) 当AD⊥BC,AE=1,CF=2时,求AC的长.
  • 19. (2019八上·高安期中) 如图,点D是∠AOB内一点,点E,F分别在OA,OB上,且OE<OF,DE=DF,∠OED+∠OFD=180°,

    1. (1) 请作出点D到OA,OB的距离,标明垂足;
    2. (2) 求证:OD平分∠AOB;
    3. (3) 若∠AOB=60°,OD=6,OE=4,求△ODE的面积。
  • 20. (2019八上·高安期中) 如图,在△ ABC 中,∠BAC=120°,AB=AC=4,AD⊥BC,延长AD至点E,使得AE=2AD,连接BE.

    1. (1) 求证:△ ABE 为等边三角形;
    2. (2) 将一块含 60°角的直角三角板 PMN 如图放置,其中点 P 与点 E 重合,且∠NEM=60°,边 NE 与 AB 交于点 G,边 ME 与 AC 交于点 F. 求证:BG=AF。
  • 21. (2019八上·高安期中) 已知射线AP是△ABC的外角平分线,连结PB、PC.

    1. (1) 如图1,若BP平分∠ABC,且∠ACB=30°,写出∠APB的度数.
    2. (2) 如图1,若P与A不重合,求证:AB+AC<PB+PC.
    3. (3) 如图2,若过点P作PM⊥BA,交BA延长线于M点,且∠BPC=∠BAC,求: 的值.
  • 22. (2019八上·高安期中) 规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.

    1. (1) 如图1,在Rt△ABC中,∠ACB=90°,CDAB于D,请写出图中两对“等角三角形”.
    2. (2) 如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°。求证:CD为△ABC的等角分割线.
    3. (3) 在△ABC中,∠A=42°,CD是△ABC的等角分割线,若△ACD是等腰三角形,请直接写出∠ACB的度数.
  • 23. (2019八上·高安期中) 已知:CD是经过∠BCA顶点C的一条直线,CACB.EF分别是直线CD上两点,且∠BEC=∠CFA=∠α.
    1. (1) 若直线CD经过∠BCA的内部,且EF在射线CD上,如图1,若∠BCA=90°,∠α=90°,则BECF;并说明理由.
    2. (2) 如图2,若直线CD经过∠BCA的外部,∠α=∠BCA , 请提出关于EFBEAF三条线段数量关系的合理猜想:.并说明理由.

微信扫码预览、分享更方便

试卷信息