当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省宁波市2021届九年级上学期数学第一次月考试卷

更新时间:2024-07-13 浏览次数:148 类型:月考试卷
一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一个符合题目要求)
二、填空题(本题有6小题,每小题5分,共30分)
三、解答题(本大题共8小题,共80分)
  • 17. (2020九上·宁波月考) 如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.建立如图所示的直角坐标系,

    ( 1 )请在图中标出△ABC的外接圆的圆心P的位置;并填写:圆心P的坐标:P);

    ( 2 )将△ABC绕点A逆时针旋转90°得到△ADE , 画出△ADE

                         

  • 18. (2021九上·拱墅期中) 现有小莉,小罗,小强三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)
  • 19. (2020九上·宁波月考) 如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦ACE , 连结BE , 若AC=8,DE=2,求

    1. (1) 求半圆的半径长;
    2. (2) BE的长度.
  • 20. (2020九上·宁波月考) 如图,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点CD是二次函数图象上的一对对称点,一次函数的图象过点BD

     

    1. (1) 请直接写出D点的坐标;
    2. (2) 求一次函数和二次函数的解析式;
    3. (3) 根据图象直接写出使一次函数值大于二次函数值的x的取值范围.
  • 21. (2020九上·宁波月考) 2020年8月,今年第4号台风“黑格比”来袭,宁波市某镇被雨水“围攻”,如图,当地有一拱桥为圆弧形,跨度AB=24米,拱高PM=8米,当洪水泛滥,水面跨度缩小到8米时要采取紧急措施,当时测量人员测得水面A1B1到拱顶距离只有1米,问是否需要采取紧急措施?请说明理由.

  • 22. (2020九上·宁波月考) 某商店原来平均每天可销售某种水果200kg , 每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20kg.
    1. (1) 设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式.
    2. (2) 若要平均每天盈利960元,则每千克应降价多少元?
    3. (3) 商店为了尽快减少库存且让利于顾客,决定对该批水果每千克至少降价3元,试问该批水果每千克应降价多少元才能达到最大利润,并求出最大利润?
  • 23. (2020九上·宁波月考) 在平面直角坐标系 xOy 中,点 P 的坐标为 (a,b) ,当a>b 时,点P' 的坐标为 (-a,b);当 a≤b 时,点P' 的坐标为 (-b,a) ,这样的点 P' 叫做点 P 的“中和点”.

    1. (1) 初步体验:

      点 A(3,1) 的“中和点 A' ”的坐标是

    2. (2) 实践应用:

      已知抛物线 y=-(x+2)2+m与 x 轴交于点 C , D (点 C 在点 D 的左侧),顶点为 E .点 P 在抛物线 y=-(x+2)2+m 上,点 P 的“中和点”为 P' .若点 P' 恰好在抛物线的对称轴上,且四边形ECP'D是菱形,求 m 的值;

    3. (3) 深化拓展:

      若点 F 是函数 y=-2x-6 ( -4≤x≤-2 )图象上的一点,点 F 的“中和点”为 F' ,连结 FF' ,以 为半径作⊙Q , 求出⊙Q的半径r的取值范围.

  • 24. (2020九上·宁波月考) 如图,抛物线yx2﹣2x﹣3与x轴相交于AB两点(A点位于B点左侧),与y轴相交于点C , 点M为抛物线的顶点.

    1. (1) 求点ABC及顶点M的坐标.
    2. (2) 若点N是第四象限内抛物线上的一个动点,连结BNCN , 求△BCN面积的最大值及此时点N的坐标.
    3. (3) 若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点BCDG为顶点的四边形是平行四边形.若存在,求出点D的坐标;若不存在,试说明理由.

微信扫码预览、分享更方便

试卷信息