解:点D为BC边中点
∴BD=CD
∵OD⊥BC
∴∠BDO=∠CDO
在△BDO和△CDO中
∵
∴△BDO≌△CDO
∴BO=CO
∵AO平分∠BAC
∴∠BAO=∠CAO
在△BAO和△CAO中,
∵
∴△BAO≌△CAO
∴AB=AC
求证:△AOC是等边三角形,并直接写出∠DAO∶∠DAB的值.
求证:
如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB , 请写出证明过程;
如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G , 就可以证明DP=DB , 请完成证明过程.