当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

内蒙古鄂尔多斯市准格尔旗2017年中考数学一模试卷

更新时间:2024-07-12 浏览次数:397 类型:中考模拟
一、单项选择题
二、填空题
三、解答题
  • 17. (2017·准格尔旗模拟)     计算题
    1. (1) 计算:( 1﹣(π+3)0﹣cos30°+ +| |
    2. (2) 先化简,再求值:( +1)÷ ,其中x是满足不等式组 的最小整数.
  • 18. (2017·准格尔旗模拟) 今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的三种统计图表.

    对雾霾了解程度的统计表:

    对雾霾的了解程度

    百分比

    A.非常了解

    5%

    B.比较了解

    m

    C.基本了解

    45%

    D.不了解

    n

    请结合统计图表,回答下列问题.

    1. (1) 本次参与调查的学生共有人,m=,n=
    2. (2) 图2所示的扇形统计图中D部分扇形所对应的圆心角是度;
    3. (3) 请补全图1示数的条形统计图;
    4. (4) 根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”态度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.
  • 19. (2017·准格尔旗模拟) 小明想知道湖中两个小亭A,B之间的距离,他在与小亭A,B位于同一水平面且东西走向的湖边小道l上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道l向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A,B之间的距离.

  • 20. (2017八下·鄞州期中) 如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB,

    1. (1) 求证:四边形AEBD是菱形;
    2. (2) 如果OA=3,OC=2,求出经过点E的反比例函数解析式.
  • 21. (2017·准格尔旗模拟) 如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE⊥PD,交PD的延长线于点C,连接AD并延长,交BE于点E.

    1. (1) 求证:AB=BE;
    2. (2) 连结OC,如果PD=2 ,∠ABC=60°,求OC的长.
  • 22. (2017·准格尔旗模拟) 我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:

    养殖种类

    成本(万元/亩)

    销售额(万元/亩)

    甲鱼

    2.4

    3

    桂鱼

    2

    2.5

    1. (1) 2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额﹣成本)
    2. (2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
    3. (3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少千克?
  • 23. (2017·准格尔旗模拟)    综合题
    1. (1) 如图1,已知△ABC,以AB,AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,不写作法,保留作图痕迹),并写出:BE与CD的数量关系

    2. (2) 如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE与CD,BE与CD有什么数量关系?说明理由;

    3. (3) 运用(1)、(2)解答中所积累的经验和知识,完成下题:

      如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

  • 24. (2017·准格尔旗模拟) 如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

    1. (1) 求A,B,C三点的坐标.
    2. (2) 点M为线段AB上一点(点M不与点A,B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积.
    3. (3) 在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2 DQ,求点F的坐标.

微信扫码预览、分享更方便

试卷信息