直线 同旁有两个定点A、B,在直线 上存在点P,使得PA十PB的值最小.解法:如图1,作点A关于直线 的对称点A',连接A'B, 则A'B与直线 的交点即为P,且PA+PB的最小值为A'B.
请利用上述模型解决下列问题;
如图,在平面直角坐标系中有三点A(x1 , y1),B(x2 , y2),C(x3 , y3),小明在学习中发现,当x1=x2 , AB∥y轴,线段AB的长度为|y1﹣y2|;当y1=y3 , AC∥x轴,线段AC的长度为|x1﹣x3|.
若点A(﹣1,1)、B(2,1),则AB∥轴(填“x”或“y”);
已知P(3,﹣3),PQ∥y轴.
若三角形OPQ的面积为3,求满足条件的点Q的坐标.
如图1,以AB为轴,把△ABC翻折180°,可以变换到△ABD的位置;如图2,把△ABC沿射线AC平移,可以变换到△DEF的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.
( 1 )将线段AB向上平移两个单位长度,点A的对应点为点 ,点B的对应点为点 ,请画出平移后的线段 ;
( 2 )将线段 绕点 按逆时针方向旋转 ,点 的对应点为点 ,请画出旋转后的线段 ;
( 3 )连接 、 ,求 的面积.
一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?
小明通过观察、分析、思考,形成了如下思路:
思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.
请参考小明的思路,任选一种写出完整的解答过程.