如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E是BC的中点,AB交⊙O于D点.
已知:如图①,四边形ABCD内接于⊙O.
求证:∠B+∠D=180°.
证法1:如图②,作直径DE交⊙O于点E,连接AE、CE.
∵DE是⊙O的直径,
∴( ).
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所对的弧是 ,
∴( ).
∴∠B+∠ADC=180°.
请把证法1补充完整,并用不同的方法完成证法2.
证法2:
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
若⊙O的半径为 cm,弦BD的长为3cm,求CF的长.