①当直线FG与⊙O相切时,求t的值;
②是否存在某一时刻t,使点G恰好落在⊙O上(异于点M)?若存在,请写出t的值;若不存在,请说明理由.
①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON= OC;
②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.
①如图,在四边形ABCD中,AD∥BC,E、F分别是AB、CD的中点,求证:EF∥BC,FE= (AD+BC)
②如图,在四边形ABCD中,∠A=90°,AB=3 ,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,求EF长度的最大值.
根据题意,仅用圆规在图①中作出一个满足条件的⊙O,并标明相关字母;
求证:CD2+CE2=4r2;
直接写出满足题意的r的取值范围;对于范围内每一个确定的r的值,CD2+CE2+FG2都有最大值,每一个最大值对应的圆心O所形成的路径长为.
如图①,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法如下:
第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;
第二步:连接OA,OB;
第三步:以O为圆心,OA长为半径作⊙O,交l于 ;
所以图中 即为所求的点.(1)在图②中,连接 ,说明∠ =30°
(方法迁移)
①如图2,当 时,请在图中用直尺(不含刻度)和圆规作等边三角形 ,使得点 在边 上,点 在边 上;
②若在该矩形中总能作出符合①中要求的等边三角形 ,请直接写出 的取值范围.
若以三角形某边上任意一点为圆心,所作的半圆上的所有点都在该三角形的内部或边上,则将符合条件且半径最大的半圆称为该边关联的极限内半圆.
如图①,点P是锐角△ABC的边BC上一点,以P为圆心的半圆上的所有点都在△ABC的内部或边上.当半径最大时,半圆P为边BC关联的极限内半圆.