当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市顺义区2021年中考数学一模试卷

更新时间:2021-06-30 浏览次数:209 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2021·顺义模拟) 解不等式: ,并把它的解集在数轴上表示出来.
  • 20. (2021·顺义模拟) 已知:如图,射线

    求作: ,使得点B在射线 上,

    作法:①在射线 上任取一点M

    ②以点M为圆心, 的长为半径画圆,交射线 于另一点B

    ③以点A为圆心, 的长为半径画弧,在射线 的上方交 于点C

    ④连接

    所以 为所求作的三角形.

    1. (1) 使用直尺和圆规依作法补全图形(保留作图痕迹);
    2. (2) 完成下面的证明.

      证明:∵ 的直径,点C 上,

      )(填推理依据).

      连接

      为等边三角形()(填推理依据).

  • 21. (2023九上·路桥月考) 已知关于x的一元二次方程
    1. (1) 求证:方程总有两个不相等的实数根;
    2. (2) 若方程有一个根是1,求方程的另一个根.
  • 22. (2021八下·苍溪期末) 如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.

    1. (1) 求证:四边形OCED是菱形;
    2. (2) 若∠BAC=30°,AC=4,求菱形OCED的面积.
  • 23. (2021·顺义模拟) 在平面直角坐标系 中,一次函数 的图象经过点
    1. (1) 求kb的值;
    2. (2) 当 时,对于x的每一个值,函数 的值小于一次函数 的值,直接写出n的取值范围.
  • 24. (2021·泉州模拟) 如图, 的直径,弦 于点E 的切线 的延长线于点F , 连接

    1. (1) 求证: 的切线;
    2. (2) 若 ,求 的长.
  • 25. (2021·顺义模拟) 某校初三年级有400名学生,为了提高学生的体育锻炼兴趣,体育老师自主开发了一套体育锻炼方法,并在全年级实施.为了检验此种方法的锻炼效果,随机抽取了20名学生在应用此种方法锻炼前进行了第一次体育测试,应用此种方法锻炼一段时间后,又进行了第二次体育测试,获得了他们的成绩(满分30分),并对数据(成绩)进行整理描述和分析,下面给出了部分信息:

    a . 第一次体育测试成绩统计表:

    分组/分

    人数

    1

    1

    9

    m

    3

    b . 第二次体育测试成绩统计图:

    c . 两次成绩的平均数、中位数、众数如下:

    平均数

    中位数

    众数

    第一次成绩

    19.7

    n

    19

    第二次成绩

    25

    26.5

    28

    d . 第一次体育测试成绩在 这一组的数据是:

    15,16,17,17,18,18,19,19,19

    e . 第二次体育测试成绩在 这一组的数据是:17,19

    请根据以上信息,回答下列问题:

    1. (1)
    2. (2) 求第二次体育测试成绩的及格率(大于或等于18分为及格);
    3. (3) 下列推断合理的是

      ①第二次测试成绩的平均分高于第一次的平均分,所以大多数学生通过此种方法锻炼一段时间后成绩提升了.

      ②被抽测的学生小明的第二次测试成绩是24分,他觉得年级里大概有240人的测试成绩比他高,所以他决心努力锻炼提高身体素质.

  • 26. (2021·顺义模拟) 在平面直角坐标系 中,抛物线 y轴交于点A
    1. (1) 求点A和抛物线顶点的坐标(用含a的式子表示);
    2. (2) 直线 与抛物线 围成的区域(不包括边界)记作G . 横、纵坐标都为整数的点叫做整点.

      ①当 时,结合函数图象,求区域G中整点的个数;

      ②当区域G中恰有6个整点时,直接写出a的取值范围.

  • 27. (2021·顺义模拟) 如图,等腰三角形 中, 于点D

    1. (1) 求出 的大小(用含 的式子表示);
    2. (2) 延长 至点E , 使 ,连接 并延长交 的延长线于点F

      ①依题意补全图形;

      ②用等式表示线段 之间的数量关系,并证明.

  • 28. (2021·顺义模拟) 对于平面直角坐标系 中的 和图形N , 给出如下定义:如果 平移m个单位后,图形N上的所有点在 内或 上,则称m的最小值为 对图形N的“覆盖近距”.
    1. (1) 当 的半径为1时,

      ①若点 ,则 对点A的“覆盖近距”为     ▲     ;

      ②若 对点B的“覆盖近距”为1,写出一个满足条件的点B的坐标    ▲   

      ③若直线 上存在点C , 使 对点C的“覆盖近距”为1,求b的取值范围;

    2. (2) 当 的半径为2时, ,且 .记 对以 为对角线的正方形的“覆盖近距”为d , 直接写出d的取值范围.

微信扫码预览、分享更方便

试卷信息