当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市2021年中考数学试卷

更新时间:2021-06-25 浏览次数:999 类型:中考真卷
一、选择题(本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本题有7小题,共66分)
  • 17. (2021·杭州) 以下是圆圆解不等式组

    的解答过程:

    解:由①,得 ,  所以

    由②,得 , 所以 , 所以

    所以原不等式组的解是

    圆圆的解答过程是否有错误?如果有错误,请写出正确的解答过程。

  • 18. (2023九下·滨江月考) 为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数直方图(每一组不含前一个边界值,含后一个边界值)

    某校某年级360名学生一分钟跳绳次数的频数表

    组别(次)

    频数

    100~130

    48

    130~160

    96

    160~190

    a

    190~220

    72

    1. (1) 求 的值;
    2. (2) 把频数直方图补充完整;
    3. (3) 求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比。
  • 19. (2021·杭州) 在①AD=AE,②∠ABE=∠ACD,③FB=FC 这三个条件中选择其中一个 , 补充在下面的问题中,并完成问题的解答。

    问题:如图,在△ABC中,∠ABC=∠ACB,点D在AB边上(不与点A,点B重合),点E在AC边上(不与点A,点C重合),连结BE,CD,BE与CD相交于点F。若_▲_,求证:BE=CD 。

    注:如果选择多个条件分别作答,按第一个解答计分。

  • 20. (2021·杭州) 在直角坐标系中,设函数 是常数, )与函数 是常数, )的图象交于点A,点A关于 轴的对称点为点B。

    1. (1) 若点B的坐标为(-1,2),

      ①求 的值;  ②当 时,直接写出 的取值范围;

    2. (2) 若点B在函数 是常数, )的图象上,求 的值。
  • 21. 如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E。已知∠ABC=60°,∠C=45°。

    1. (1) 求证:AB=BD;
    2. (2) 若AE=3,求△ABC的面积。
  • 22. 在直角坐标系中,设函数 是常数, )。
    1. (1) 若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;
    2. (2) 写出一组a、b的值,使函数y=ax2+bx+1的图象与x轴有两个不同的交点,并说明理由.
    3. (3) 已知 ,当 是实数, )时,该函数对应的函数值分别为P,Q。若 ,求证:P+Q>6 。
  • 23. (2021·杭州) 如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连结BG。

    1. (1) 求证:△ABG∽△AFC;
    2. (2) 已知AB= ,AC=AF= ,求线段FG的长(用含 的代数式表示);
    3. (3) 已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:  。

微信扫码预览、分享更方便

试卷信息