如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
( 1 )在图中画出△ABC关于直线l对称的△A1B1C1;
(要求:A与A1 , B与B1 , C与C1相对应)
( 2 )求出△A1B1C1面积.
( 3 )在直线l上找一点P,使得PA+PB的值最小.
求证:
①在射线BM上作一点C,使BC=BA.
②作∠ABM的角平分线交直线AN于D点.
如图①,△ABC 中,沿∠BAC 的平分线 AB1 折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线 A1B2 折叠,剪掉重复部分;….;将余下部分沿∠BnAnC 的平分线 AnBn+1 折叠, 点 Bn 与点 C 重合.无论折叠多少次,只要最后一次恰好重合,∠BAC 是△ABC 的好角. 小丽展示了确定∠BAC 是△ABC 的好角的两种情形.情形一:如图②,沿等腰三角形ABC 顶角∠BAC 的平分线 AB1 折叠,点 B 与点 C 重合;情形二:如图③,沿∠BAC 的平分线 AB1 折叠,剪掉重复部分;将余下的部分沿∠B1A1C 的平分线 A1B2 折叠,此时点 B1 与点 C 重合.
请你完成,如果一个三角形的最小角是 12°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.