(2)
现在我们分别向容器甲,乙同时持续注水(注水前两个容器是空的),一开始注水流量均为25立方米/小时,4小时后.把容器甲的注水流量增加
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ea%3C%2Fmi%3E%3C%2Fmath%3E)
立方米/小时,同时保持容器乙的注水流量不变,继续注水2小时后,把容器甲的注水流量再一次增加50立方米/小时,同时容器乙的注水流量仍旧保持不变.直到两个容器的水位高度相同,停止注水.在整个注水过程中,当注水时间为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmath%3E)
时,我们把容器甲的水位高度记为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eh%3C%2Fmi%3E%3Cmi%3E%E7%94%B2%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,容器乙的水位高度记为
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eh%3C%2Fmi%3E%3Cmi%3E%E4%B9%99%3C%2Fmi%3E%3C%2Fmsub%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,设
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmsub%3E%3Cmi%3Eh%3C%2Fmi%3E%3Cmi%3E%E4%B9%99%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%E2%88%92%3C%2Fmo%3E%3Cmsub%3E%3Cmi%3Eh%3C%2Fmi%3E%3Cmi%3E%E7%94%B2%3C%2Fmi%3E%3C%2Fmsub%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3Eh%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
,已知
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Eh%3C%2Fmi%3E%3C%2Fmath%3E)
(米)关于注水时间
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Et%3C%2Fmi%3E%3C%2Fmath%3E)
(小时)的函数图象如图③所示,其中
![](//math.21cnjy.com/MathMLToImage?mml=%3Cmath+xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmrow%3E%3Cmi%3EM%3C%2Fmi%3E%3Cmi%3EN%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmath%3E)
平行于横轴.根据图中所给信息,解决下列问题:
①求
的值;
②求图③中线段
所在直线的解析式.