当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市2021年中考数学试卷

更新时间:2021-07-14 浏览次数:620 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 20. (2021·北京) 《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点 处立一根杆,在地面上沿着杆的影子的方向取一点 ,使 两点间的距离为10步(步是古代的一种长度单位),在点 处立一根杆;日落时,在地面上沿着点 处的杆的影子的方向取一点 ,使 两点间的距离为10步,在点 处立一根杆.取 的中点 ,那么直线 表示的方向为东西方向.
    1. (1) 上述方法中,杆在地面上的影子所在直线及点 的位置如图所示.使用直尺和圆规,在图中作 的中点 (保留作图痕迹);

    2. (2) 在如图中,确定了直线 表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线 表示的方向为南北方向,完成如下证明.

      证明:在 中,   ▲  的中点,

        ▲  (填推理的依据).

      ∵直线 表示的方向为东西方向,

      ∴直线 表示的方向为南北方向.

  • 21. (2023九上·广州月考) 已知关于 的一元二次方程
    1. (1) 求证:该方程总有两个实数根;
    2. (2) 若 ,且该方程的两个实数根的差为2,求 的值.
  • 22. (2022九下·长沙开学考) 如图,在四边形 中, ,点 上, ,垂足为

    1. (1) 求证:四边形 是平行四边形;
    2. (2) 若 平分 ,求 的长.
  • 23. (2023八上·宣城期中) 在平面直角坐标系 中,一次函数 的图象由函数 的图象向下平移1个单位长度得到.
    1. (1) 求这个一次函数的解析式;
    2. (2) 当 时,对于 的每一个值,函数 的值大于一次函数 的值,直接写出 的取值范围.
  • 24. (2022·西宁模拟) 如图, 的外接圆, 的直径, 于点

    1. (1) 求证:
    2. (2) 连接 并延长,交 于点 ,交 于点 ,连接 .若 的半径为5, ,求 的长.
  • 25. (2022八下·高平期末) 为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.

    .甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组: ):

    .甲城市邮政企业4月份收入的数据在 这一组的是:10.0,10.0,10.1,10.9,11.4,11.5,11.6,11.8

    .甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:

    平均数

    中位数

    甲城市

    10.8

    乙城市

    11.0

    11.5

    根据以上信息,回答下列问题:

    1. (1) 写出表中 的值;
    2. (2) 在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 .在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为 .比较 的大小,并说明理由;
    3. (3) 若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).
  • 26. (2022·郑州模拟) 在平面直角坐标系 中,点 和点 在抛物线 上.
    1. (1) 若 ,求该抛物线的对称轴;
    2. (2) 已知点 在该抛物线上.若 ,比较 的大小,并说明理由.
  • 27. (2022九上·信阳开学考) 如图,在 中, 的中点,点 上,以点 为中心,将线段 顺时针旋转 得到线段 ,连接

    1. (1) 比较 的大小;用等式表示线段 之间的数量关系,并证明;
    2. (2) 过点 的垂线,交 于点 ,用等式表示线段 的数量关系,并证明.
  • 28. (2021·北京) 在平面直角坐标系 中, 的半径为1,对于点 和线段 ,给出如下定义:若将线段 绕点 旋转可以得到 的弦 分别是 的对应点),则称线段 的以点 为中心的“关联线段”.

    1. (1) 如图,点 的横、纵坐标都是整数.在线段 中, 的以点 为中心的“关联线段”是
    2. (2) 是边长为1的等边三角形,点 ,其中 .若 的以点 为中心的“关联线段”,求 的值;
    3. (3) 在 中, .若 的以点 为中心的“关联线段”,直接写出 的最小值和最大值,以及相应的 长.

微信扫码预览、分享更方便

试卷信息