当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省2021年中考数学真题分类汇编11 图形的相似

更新时间:2021-06-29 浏览次数:227 类型:二轮复习
一、单选题
二、填空题
  • 4. (2021·衢州) 图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且 ,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得 .

    1. (1) 椅面CE的长度为cm.
    2. (2) 如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角 的度数达到最小值 时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:
  • 5. (2022九下·临沭期中) 如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=.

  • 6. (2023九上·鄞州期末) 如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知 .

    1. (1) ED的长为.
    2. (2) 将木条BC绕点B按顺时针方向旋转一定角度得到 (如图2),点P的对应点为 与MN的交点为D′,从A点发出的光束经平面镜 反射后,在MN上的光点为 .若 ,则 的长为.
  • 7. (2021·嘉兴) 如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是

  • 8. (2024·拱墅模拟) 如图,在矩形 中,点E在边 上, 关于直线 对称,点B的对称点F在边 上,G为 中点,连结 分别与 交于M,N两点,若 ,则 的长为 的值为.

三、综合题
  • 9. (2021·衢州) 如图,在 中, ,BC与 相切于点D,过点A作AC的垂线交CB的延长线于点E,交 于点F,连结BF.

    1. (1) 求证:BF是 的切线.
    2. (2) 若 ,求EF的长.
  • 10. (2021·衢州) 如图1,点C是半圆O的直径AB上一动点(不包括端点), ,过点C作 交半圆于点D,连结AD,过点C作 交半圆于点E,连结EB.牛牛想探究在点C运动过程中EC与EB的大小关系.他根据学习函数的经验,记 .请你一起参与探究函数 随自变量x变化的规律.

    通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

    x 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60
    2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38
    5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10

    1. (1) 当 时, .
    2. (2) 在图2中画出函数 的图象,并结合图象判断函数值 的大小关系.
    3. (3) 由(2)知“AC取某值时,有 ”.如图3,牛牛连结了OE,尝试通过计算EC,EB的长来验证这一结论,请你完成计算过程.
    1. (1) (证明体验)

      如图1, 的角平分线, ,点E在 上, .求证: 平分 .

    2. (2) (思考探究)

      如图2,在(1)的条件下,F为 上一点,连结 于点G.若 ,求 的长.

    3. (3) (拓展延伸)

      如图3,在四边形 中,对角线 平分 ,点E在 上, .若 ,求 的长.

    1. (1) 【推理】
      如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.

      求证: .
    2. (2) 【运用】
      如图2,在(推理)条件下,延长BF交AD于点H.若 ,求线段DE的长.
    3. (3) 【拓展】
      将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若 ,求 的值(用含k的代数式表示).
  • 13. (2021·杭州) 如图,锐角三角形ABC内接于⊙O,∠BAC的平分线AG交⊙O于点G,交BC边于点F,连结BG。

    1. (1) 求证:△ABG∽△AFC;
    2. (2) 已知AB= ,AC=AF= ,求线段FG的长(用含 的代数式表示);
    3. (3) 已知点E在线段AF上(不与点A,点F重合),点D在线段AE上(不与点A,点E重合),∠ABD=∠CBE,求证:  。
  • 14. (2021·温州) 如图,在平面直角坐标系中, 经过原点 ,分别交 轴、 轴于 ,连结 .直线 分别交 于点 (点 在左侧),交 轴于点 ,连结 .

    1. (1) 求 的半径和直线 的函数表达式.
    2. (2) 求点 的坐标.
    3. (3) 点 在线段 上,连结 .当 的一个内角相等时,求所有满足条件的 的长.
  • 15. (2021·宁波) 如图1,四边形 内接于 为直径, 上存在点E,满足 ,连结 并延长交 的延长线于点F, 交于点G.

    1. (1) 若 ,请用含 的代数式表列 .
    2. (2) 如图2,连结 .求证; .
    3. (3) 如图3,在(2)的条件下,连结 .

      ①若 ,求 的周长.

      ②求 的最小值.

  • 16. (2021·金华) 在平面直角坐标系中,点A的坐标为 ,点B在直线 上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.

    1. (1) 如图,点B,C分别在第三、二象限内,BC与AO相交于点D.

      ①若 ,求证: .

      ②若 ,求四边形 的面积.

    2. (2) 是否存在点B,使得以 为顶点的三角形与 相似?若存在,求OB的长;若不存在,请说明理由.
  • 17. (2021·湖州) 已知在平面直角坐标系xOy中,点A是反比例函数 图像上的一个动点,连结AO,AO的延长线交反比例函数 )的图像于点B,过点A作AE⊥ 轴于点E。

    1. (1) 如图1,过点B作BF⊥ 轴于点F,连结EF,

      ①若 ,求证:四边形AEFO是平行四边形;

      ②连结BE,若 ,求△BOE的面积。

    2. (2) 如图2,过点E作EP∥AB,交反比例函数 )的图像于点P,连结OP。

      试探究:对于确定的实数 ,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由。

微信扫码预览、分享更方便

试卷信息