当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

陕西省初中数学历年真题与模拟汇编:图形的变化1

更新时间:2022-10-11 浏览次数:167 类型:二轮复习
一、单选题
二、填空题
三、解答题
  • 16. (2022九上·西安月考) 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.

    已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.

  • 17. (2016·陕西)

    某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.

    如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.

  • 18. (2021·陕西) 一座吊桥的钢索立柱 两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索 的长度,他们测得 为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现 恰好为45°,点B与点C之间的距离约为16m.已知点B、C、D共线, .求钢索 的长度.(结果保留根号)

  • 19. (2020·陕西) 如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.

  • 20. (2020九上·兰州月考) 小明利用刚学过的测量知识来测量学校内一棵古树的高度。一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示。于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动带点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米。已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,求这棵古树的高度AB。(小平面镜的大小忽略不计)

  • 21. A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据: ≈1.414, ≈1.732)

  • 22. (2017·陕西) 某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)

  • 23. (2022九上·晋中期末) 如图,强强同学为了测量学校一棵笔直的大树OE的高度,先在操场上点A处放一面平面镜,从点A处后退1m到点B处,恰好在平面镜中看到树的顶部E点的像;再将平面镜向后移动4m(即AC=4m)放在C处,从点C处向后退1.5m到点D处,恰好再次在平面镜中看到大树的顶部E点的像,测得强强的眼睛距地面的高度FB、GD为1.5m,已知点O,A,B,C,D在同一水平线上,且GD⊥OD,FB⊥OD,EO⊥OD.求大树OE的高度.(平面镜的大小忽略不计)

  • 24. (2022·玉山模拟)   2020年我国建成5G基站超60万个,5G建设跑出“中国速度”.某地有一个5G信号塔AB,小敏想用所学的数学知识测量信号塔AB的高度,她选择用树CD和楼房来测量.首先在树的底部D处测得信号塔的顶部A的仰角为42°;然后她站在楼房上的点E处恰好看到树的顶端C、信号塔的顶端A在一条直线上.测得树与楼房的距离DF=12米,CD=12米,EF=6米,已知点B、D、F三点共线,AB⊥BF,CD⊥BF,EF⊥BF,测量示意图如图所示.请根据相关测量信息,求信号塔AB的高度.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

  • 25. (2021·陕西模拟) 小雁塔位于西安市南门外的荐福寺内,与大雁塔同为唐长安城保留至今的重要标志.小莹在数学综合实践活动中,欲利用所学的数学知识对小雁塔的高度进行测量,如图,CD是临时搭建的一个钢架,小莹先测得小雁塔与钢架CD之间的距离AC为43m,然后她站在E点处测得钢架CD的顶端D的仰角为26.7°,转身测得小雁塔AB的顶端B的仰角为47.8°,已知钢架CD的高度为4m,小莹的观测点E距地面的距离EF=1.5m,且AB⊥AC,EF⊥AC,CD⊥AC,求小雁塔AB的高度.(参考数据:sin47.8°≈0.74,cos47.8°≈0.67,tan47.8°≈1.10,sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)

  • 26. (2023九上·扶沟期末) 如图①,西安奥体中心体育场作为2021年第十四届全运会的主会场,以西安市花“石榴花”为构思,以“丝路起航,盛世之花”为立意,让建筑、自然与人共生共融.小明和数学实践小组的同学想知道西安奥体中心主体育场馆的高度,于是他们拿着测倾器和皮尺来到奥体中心,如图②所示,小明选定场馆前的一棵树CD来测量,他先调整测倾器的位置发现,在H处观测树顶C的仰角为30°,此时恰好看到场馆AB的顶部A(G,C、A三点在一条直线上);接着,小明从H处出发沿HB方向前进26m到达F处,此时观测树顶C的仰角为60°,测得BD=60m,测倾器的高度GH=EF=1m,已知AB⊥BH,CD⊥BH,EF⊥BH,CH⊥BH,点D、F在BH上,求西安奥体中心主体育场馆AB的高度.(结果保留根号)

  • 27. (2021·兴平模拟) 如图所示,某校综合实践活动小组的同学欲测量公园内一棵树 的高度,他们在这棵树的正前方一座楼亭前的台阶上 点处测得树顶端 的仰角为 ,朝着这棵树的方向走到台阶下的点 处,测得树顶端 的仰角为 .已知 点的高度 为3米,台阶 的坡比为1: (即AB:BC=1: ),且 三点在同一条直线上.请根据以上条件求出树 的高度(侧倾器的高度忽略不计).

  • 28. (2021九上·本溪期中) 九年级活动小组计划利用所学的知识测量操场旗杆高度.测量方案如下:如图,小卓在小越和旗杆之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小卓看着镜面上的标记,他来回走动,走到点D时看到旗杆顶端点A在镜面中的像与镜面上的标记点C重合,这时测得小卓眼睛与地面的高度ED=1.5米,CD=1米,然后在阳光下,小越从D点沿DM方向走了15.8米到达F处此时旗杆的影子顶端与小越的影子顶端恰好重合,测得FG=1.6米,FH=3.2米,已知AB⊥BM,ED⊥BM,GF⊥BM若测量时所使用的平面镜的厚度忽略不计,请你根据图中提供的相关信息求出旗杆的高AB.

  • 29. (2021八下·龙泉驿期末) 小刚和小亮想用测量工具和几何知识测量公园古树 的高度,由于有围栏保护,他们无法到达底部 ,如图,围栏 米,小刚在 延长线 点放一平面镜,镜子不动,当小刚走到点 时,恰好可以通过镜子看到树顶 ,这时小刚眼睛 与地面的高度 米, 米, 米;同时,小亮在 的延长线上的 处安装了测倾器(测倾器的高度忽略不计),测得树顶 的仰角 米,请根据题中提供的相关信息,求出古树 的高度.

  • 30. (2021·陕西模拟) 西安市某中学在创建“特色校园”的活动中,将本校的办学理念做成宣传牌,放置在教学楼的顶部(如图所示),小华想测量宣传牌的高AB,首先,他站在地面上的点D处,测得宣传牌底端B的仰角 的度数,然后沿DM方向走到点F处,此时,测得宣传牌顶端A的仰角 的度数,竟然发现 ,已知A,B,M三点共线, ,教学楼的高 ,试求宣传牌的高AB.

  • 31. (2021·西安模拟) 如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山两侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.( 取1.7,sin20°取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)

  • 32. (2021·西安模拟) 如图,五一假期,小华想用所学知识测得山脚B点到山顶C点登山缆车行驶的路线BC的距离,小华站在山脚B处测得C处的仰角为37°,然后,小华沿BA方向走了180米,移动至A点处,此时,测得C点处的仰角为30°,求山脚B点到山顶C点的距离BC.(结果保留根号)(参考数据sin37°≈ ,cos37°≈ ,tan37°≈

  • 33. (2021·汉台模拟) 如图,某地有一座古楼,小华和数学组的成员想用所学知识测量古楼的高AB.测量方法如下:首先,小华站在D处,用测角仪测得古楼顶端A的仰角为50.3°;然后,小华在点N处竖立高2米的标杆MN,接着沿DN后退到点F,恰好看到标杆顶端M和古楼顶端A在一条直线上.量得小华的眼睛到地面的距离CD=EF=1.5米,NF=1米,DF=68米.测量示意图如图所示,已知点D、B、N、F在一条直线上,CD⊥DF,AB⊥DF,MN⊥DF,EF⊥DF,求这座古楼的高AB.(参考数据:sin50.3°≈0.77,cos50.3°≈0.64,tan50.3°≈1.20)

  • 34. (2021·陕西模拟) 如图,在Rt△ABC中,∠ACB=90°,sinB= , D是BC上一点,DE⊥AB于点E,CD=DE,AC+CD=9.求BE,CE的长.

  • 35. (2020九上·西安月考) 西安市的大雁塔又名“慈恩寺塔”,是国家级文物保护单位,玄奘为保存由天竺经丝绸之路带回长安的经卷主持修建了大雁塔,最初五层,后加盖至九层,是西安市的标志性建筑之一,某校社会实践小组为了测量大雁塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,大雁塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点G处,这时地面上的点F,标杆的顶端点H,大雁塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米,请你根据以上数据,计算大雁塔的高度AB.

  • 36. (2020·铜川模拟) 汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)

  • 37. (2020·乾县模拟) 小亮和小刚利用学过的测量知识测量一座房子的高度,如图所示,他们先在地面上的点D处竖直放了一根标杆CD,在房子和标杆之间的地面上平放一平面镜,并在镜面上做了一个标记,小刚来回移动平面镜,当这个标记与地面上的点E重合时,小亮在标杆顶端C处刚好看到房子的顶端点A在镜面中的像与镜面上的标记重合,此时,在C处测得房子顶端点A的仰角为45°,点D到点E的距离为0.8米,标杆CD的长度为1米,已知点D、E、B在同一水平直线上,且CD、AB均垂直于BD,求房子的高度AB。(平面镜的厚度忽略不计)

四、作图题

微信扫码预览、分享更方便

试卷信息