4 4
在金黄的芦苇荡,一对丹顶鹤扇动着美丽的翅膀翩翩起舞。丹顶鹤体态优美、行止有节、鹤鸣悠扬,被人们誉为“仙鹤”。丹顶鹤是我国一级保护动物,主要栖息在沼泽、浅滩和芦苇塘等湿地。它的喙、颈和足都很长、能够捕食湿地中的鱼、虾、昆虫和软体动物,也吃植物的根、茎和种子。丹顶鹤春夏季在东北地区繁殖,就地取材筑巢产卵,雌雄轮流孵卵。约一个月后,雏鸟破壳而出,跟随双亲学习觅食、飞翔等生存技能。幼鹤长到一岁左右就离开双亲独立生活。丹项鹤秋冬季节迁徙到温暖的南方越冬。近年来,由于湿地面积大量减少,丹顶鹤的生存受到严重威胁。为保护丹顶鹤,我国不仅建立了多个自然保护区就地保护,而且在动物园、野生动物保护中心等机构迁地保护,进行了相关研究和种群复壮工作。丹顶鹤幼体容易感染血孢子虫。血孢子虫通过蚊虫叮咬传播,在血细胞内快速繁殖,导致个体患病甚至死亡。为了预防该传染病的发生,北京动物园研究人员将一岁以内的丹顶鹤幼体移至防蚊大棚饲养。持续监测发现,采取该预防措施后,幼鹤未检测到血孢子虫感染。该措施已用于幼鹤野外放归前的阶段饲养。目前北京动物园已有6只丹顶鹤成功放归野外。截止2018年,由各地保护机构放归的16只丹顶鹤中,已有9只成功在野外存活,并有多只在野外繁殖了后代。
组别 | 性别 | 数量(尾) | 均重(千克/尾) | 产卵(精)率 | 出苗率 |
工厂化养殖 | 雌 | 5 | 2.5 | 60% | 27.37% |
雄 | 5 | 2.72 | 80% | ||
仿生态养殖 | 雌 | 5 | 2.66 | 100% | 58.17% |
雄 | 5 | 2.76 | 80% | ||
原生态养殖 | 雌 | 5 | 2.58 | 75% | 56.16% |
雄 | 5 | 2.68 | 50% |
①据表可知,为了保证实验中只有这一个变量,实验开始前选择了相等、相似、性别比例为的大鲵作为实验材料.
②研究中,不仅仅计算大鲵的产卵(精)率,还可以借助(工具)观察卵和精子的形态结构,判断生殖细胞的质量.
③根据实验数据分析,最好采用养殖模式,达到保护大鲵、增加大鲵数量的目的.
相信大家都见过憨态可掬、黑白相间的大熊猫吃竹子的情景。研究人员发现,具有肉食动物消化道特征的大熊猫,99%的食物都是竹子,但是对食物的消化率却不足17%。而其它草食动物普遍能消化超过80%的植物性食物。那么大熊猫取食竹子,能获取足够的能量吗?
实际上,大熊猫每天至少花费10小时进食,同时它们还会选择营养最丰富的竹子种类,并优先取食营养价值最高的部位。根据季节不同,大熊猫会优先选择竹笋,其次为嫩竹与竹叶,最后为竹秆。这样的方式会让大熊猫获取足够的能量,进而维持恒定的体温。
在冬季, 大熊猫生活的区域气温常常能达到-20℃。大熊猫还有哪些“御寒神技”呢?大熊猫体表被毛,皮下有厚厚的脂肪层,使其具有较强的抗寒能力。近期,科学家观察到大熊猫喜欢用新鲜的马粪“洗澡”。它们会先通过气味判断马粪的新鲜程度,之后用脸颊轻扫粪堆,最后用马粪覆盖全身。这种并不卫生的行为很可能导致大熊猫感染致病菌或寄生虫病,然而科学家却认为这种奇特的行为一定对大熊猫利大于弊。在2020年的最新研究中,我国科学家在新鲜马粪中发现了两种“抗冷分子”——β-石竹烯(BCP)与氧化石竹烯(BCPO)。这两种物质通过麻痹大熊猫感受寒冷的感受器,减少了它对寒冷的感知,这样大熊猫在寒冬里依然保持正常的取食欲望,进而保证能量的获取,在一定程度上增强大熊猫的抗寒能力。
拥有“御寒神技”的大熊猫,却在气候变迁和人类活动的影响下,种群数量逐渐减小,一度被定为濒危物种。1963年开始,我国先后建立14个自然保护区,通过科研助力大熊猫恢复种群数量,并通过立法对大熊猫进行保护。在大家共同努力下,大熊猫从濒危物种变为易危物种。这是世界对我国大熊猫保护成果的肯定和支持,然而保护大熊猫的路还很长,这需要我们每个人的共同参与。
在一定条件下,动物的雌雄个体相互转化的现象称为性别反转。鱼类、两栖类都可能出现性别反转,比如黄鳝,去掉一群鱼中的雄鱼,部分雌鱼就会变成雄鱼并产生正常的精子;乌龟的性别由龟蛋孵化时的温度决定,在44℃以下的环境孵化出的是雄龟,而在44℃以上的环境孵化出的都是雌龟.
雄性生育的海马:一说到生殖,我们很自然地就想到了雌性的伟大,但海马是个例外。海马区分雌雄的方法很简单,就是雄海马有腹囊(俗称育儿袋),而雌海马却没有。交配期间,雌海马把卵子释放到育儿袋里,雄海马负责给这些卵子受精。受精卵要在育儿袋里经过50~60天,才能发育成形,释放到海水里。爸爸的育儿袋只是起到了孵化器的作用,海马是地球上唯一一种由雄性生育后代的动物。
谋“巢”害命的寄生蜂:在哥斯达黎加,有一种寄生黄蜂,当它要繁殖时,雌蜂就会抓获一只蜘蛛,随后用它的刺麻痹蜘蛛10~15分钟,期间寄生蜂会产下一颗卵,轻轻地把它黏附在蜘蛛腹部。蜘蛛恢复知觉后,就像什么都没发生过一样。一两个星期后,寄生黄蜂的幼虫孵化出来,它用刺刺穿蜘蛛的胃,并从中取食。黄蜂幼虫在杀死蜘蛛前会将其榨取得一丝不剩。它向蜘蛛注射一种神经活性物质,诱惑其织一张形状完全不同于平时的新网。织完网后,黄蜂幼虫就会杀死蜘蛛并将它吃掉。接着把新织的网缠绕成一个茧(茧:蛹期的囊状保护物),将自己包裹在其中。不到两周的时间,黄蜂幼虫便可发育成熟,破茧而出。
好氧堆肥:厨余垃圾的好氧堆肥是在有氧的条件下,借助好氧细菌的作用来进行的。在堆肥过程中,厨余垃圾中 的可溶性有机物质直接被微生物所吸收;固体的和胶体的有机物先附着在微生物体外,由生物所分泌的胞外酶分 解为溶解性物质,再渗入细胞。微生物通过自己的生命活动——氧化、还原合成等过程,把一部分被吸收的有机 物氧化成简单的无机物,并放出微生物生长、活动所需要的能量,把另一部分有机物转化为生物体所必需的营养 物质,合成新的细胞物质,使微生物逐渐生长繁殖,产生更多的生物体,
厌氧发酵:厨余垃圾的厌氧发酵过程就是在特定的厌氧环境下,厌氧微生物将厨余垃圾中的有机质进行分解, 其中一部分碳素物质转化为甲烷和二氧化碳。在这个转化作用中,被分解的有机碳化物中的能量大部分贮存在甲 烷中,仅一小部分有机碳化物转化为二氧化碳,释放的能量来满足微生物生命活动的需要。
蚯蚓吞食:蚯蚓喜欢生活在富含有机质和湿润的土壤中,它的繁殖能力强,消化系统非常发达。其体内富含 蛋白质分解酶、脂肪分解酶、纤维酶、淀粉酶等物质,具有极强的吞食有机物和土壤的能力。在蚯蚓的消化道中, 还有大量的细菌、霉菌、放线菌等与之共存,这使得蚯蚓具有转化改造有机质的特殊能力。蚯蚓能够处理垃圾, 在实现垃圾的无害化、减量化和资源化等方面,具有一定的优势。
如图1这只海洋小精灵是海兔(Ovula ovum),它警惕地竖起两只“耳朵”(触角)的这一瞬间,活像一只蹲在地上竖着一对耳朵的小白兔。海兔身体弱软,没有石灰质的外壳,它的贝壳已经退化为一层薄而透明、无螺旋的角质壳,被埋在背部外套膜下。这个可爱的小精灵是重要的神经生理学实验动物。海兔有一个十分明显的反射活动——縮鳃反射,其反射弧如图2所示。海兔的身体受到刺激时,会将柔嫩的外鳃缩回体内,以此来免遭伤害。坎德尔在短时间内频繁的用水轻轻冲击海兔,缩鳃反射就会逐渐减弱,这是“习惯化”;然后接着电击它的尾部,海兔出现强烈的缩鳃反射,这是“敏感化”;随后,将两种刺激配对施加,每次都先用水轻轻冲击海兔,再电击其尾部,重复多次后,即便用水轻轻冲击海兔,每次也会出现缩鳃反射。坎德尔发现,连续叠加刺激海兔40次后,再只用水冲击,缩鳃反射只能持续一天;但是如果每天10次叠加刺激,连续刺激四天,缩鳃反射能够持续10天以上。坎德尔把负责这种缩鳃反射的一个神经节分离了出来,观察其反应。同时把神经元分泌的某种蛋白质分离出来,这种蛋白质就是今天称之为反应结合蛋白,是维持记忆的关键。为此,在2000年,坎德尔因为研究海兔获得诺贝尔奖。海兔还是科学家发现的第一种可生成植物色素-叶绿素的动物。研究发现,藻类被海兔摄入体内后,在整个消化过程中叶绿体被奇迹般地保存下来,并储存在海兔体内供其进行光合作用。然而仅有叶绿体是不能完成光合作用的,原因是藻类的叶绿体内部仅能合成维持光合作用的10%的蛋白质,其余的蛋白质都需要依靠海兔的细胞核基因来合成。
为了证明海兔细胞内具有这个基因,科研人员首先用海藻喂养海兔2周,发现在无食物供给的情况下,竟然健康地生活了一年之久。这个实验充分说明了海兔体本身具有维持叶绿体功能的基因。于是科学家将自己的视线转移到了海兔的DNA序列。测序的结果显示:海兔体内一段重要的DNA片段和藻类光合作用的相关基因有着完全相同的序列,而在其他动物体内尚未发现类似基因。
一位动物学家对生活在非洲大草原奥兰治河两岸的羚羊群进行了一番研究。他发现东岸羚羊的繁殖能力比西岸的强,奔跑速度也不一样,每分钟要比西岸羚羊快13米。对这些差别,这位动物学家曾百思不得其解,因为这些羚羊的生存环境和属类都是相同的,食物来源也一样,都以一种叫莺萝的牧草为食。
有一年,在动物保护协会的赞助下,他在东西两岸各捉了10只羚羊,把它们送往对岸。结果,运到西岸的10只东岸羚羊一年后繁殖到14只,运到东岸的10只西岸羚羊仅剩3只,那7只全被狼吃了。这位动物学家终于找到了东岸羚羊比西岸羚羊强健的原因了。