当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省无锡市八校联盟2020-2021学年高三上学期数学第三...

更新时间:2024-07-13 浏览次数:96 类型:高考模拟
一、单选题
二、多选题
三、填空题
  • 13. (2020·无锡模拟) 被誉为“数学之神”之称的阿基米德(前287—前212),是古希腊伟大的物理学家、数学家、天文学家,他最早利用逼近的思想证明了如下结论:抛物线的弦与抛物线所围成的封闭图形的面积,等于抛物线的弦与经过弦的端点的两条切线所围成的三角形面积的三分之二.这个结论就是著名的阿基米德定理,其中的三角形被称为阿基米德三角形.在平面直角坐标系心中,已知直线ly=4与抛物线C: 交于AB两点,则弦与拋物线C所围成的封闭图形的面积为
  • 14. (2020·无锡模拟) 地震震级是根据地震仪记录的地震波振幅来测定的,一般采用里氏震级标准.震级 是用据震中100千米处的标准地震仪所记录的地震波最大振幅值的对数来表示的.里氏震级的计算公式为 ,其中 是被测地震的最大振幅, 是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).根据该公式可知,7.5级地震的最大振幅是6级地震的最大振幅的倍(精确到1).
  • 15. (2020·无锡模拟) 若不等式 对一切x R恒成立,其中ab Re为自然对数的底数,则ab的取值范围是
  • 16. (2020·无锡模拟) 将正奇数按如图所示的规律排列:

    1

    3    5    7

    9    11    13    15    17

    19    21    23    25    27    29    31

    ………………………

    则2021在第行,从左向右第个数.

四、解答题
  • 17. (2020·无锡模拟) 在① csinA=acosC;②tan =2+ ;③a2+b2=c2 ab这三个条件中任选一个,补充在下面问题中,并加以解答.

    已知△ABC中的内角A,B,C的对边分别为a,b,c,面积为S,若c=4,B=105°,  ▲  , 求a和S.

  • 18. (2020·无锡模拟) 已知数列 的前n项和为 ,且 ,n .
    1. (1) 求数列 的通项公式;
    2. (2) 设 ,数列 的前n项和为 ,求证: .
  • 19. (2022·惠州模拟) 2019年4月,江苏省发布了高考综合改革实施方案,试行“ ”高考新模式.为调研新高考模式下,某校学生选择物理或历史与性别是否有关,统计了该校高三年级800名学生的选科情况,部分数据如下表:

    性别

    科目

    男生

    女生

    合计

    物理

    300

    历史

    150

    合计

    400

    800

    附:

    0.050

    0.010

    0.001

    k

    3.841

    6.635

    10.828

    1. (1) 根据所给数据完成上述表格,并判断是否有99.9%的把握认为该校学生选择物理或历史与性别有关;
    2. (2) 该校为了提高选择历史科目学生的数学学习兴趣,用分层抽样的方法从该类学生中抽取5人,组成数学学习小组.一段时间后,从该小组中抽取3人汇报数学学习心得.记3人中男生人数为X,求X的分布列和数学期望 .
  • 20. (2020·无锡模拟) 如图,在正六边形 中,将 沿直线 翻折至 ,使得平面 平面 ,O,H分别为 的中点.

    1. (1) 证明: 平面
    2. (2) 求平面 与平面 所成锐二面角的余弦值.
  • 21. (2020·无锡模拟) 对于定义在D上的函数f(x),如果存在实数x0 , 使得f(x0)=x0 , 那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.
    1. (1) 当a=-2时,求f(x)的不动点;
    2. (2) 若函数f(x)有两个不动点x1 , x2 , 且x1<2<x2.

      ①求实数a的取值范围;

      ②设g(x)=loga[f(x)-x],求证:g(x)在(a,+∞)上至少有两个不动点.

  • 22. (2020·无锡模拟) 已知O为坐标原点,椭圆C: ,点D,M,N为C上的动点,O,M,N三点共线,直线DM,DN的斜率分别为 ( ).
    1. (1) 证明:
    2. (2) 当直线DM过点 时,求 的最小值;
    3. (3) 若 ,证明: 为定值.

微信扫码预览、分享更方便

试卷信息