3. 17 |
3.18 |
3.19 |
|
0.02 |
销售单价 (元/件) | … | 20 | 30 | 40 | … |
每天销售量 (件) | … | 500 | 400 | 300 | … |
先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.
例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值,2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8,可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8.
根据阅读材料用配方法解决下列问题:
人类对一元二次方程的研究经历了漫长的岁月.一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家花拉子米在他的代表作《代数学》中给出了一元二次方程的一般解法,并用几何法进行了证明.我国古代三国时期的数学家赵爽也给出了类似的几何解法.赵爽在其所著的《勾股圆方图注》中记载了解方程 即 得方法.首先构造了如图1所示得图形,图中的大正方形面积是 ,其中四个全等的小矩形面积分别为 ,中间的小正方形面积为 ,所以大正方形的面积又可表示为 ,据此易得 .
任务:
解:原式=x2+2xy+y2-y2-3y2
=(x2+2xy+y2)-4y2
=(x+y)2-(2y)2
=(x+y+2y)(x+y-2y)
=(x+3y)(x-y)
像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.
问题:
材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1 , x2则x1+x2=﹣ ,x1x2= .
材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求 的值.
解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn=﹣1,所以 =﹣3.
根据上述材料解决以下问题:
任意给定一个矩形A,若存在另一个矩形B,使它的周长和面积分别是矩形A的一半,则称矩形 是“兄弟矩形”.
探究:当矩形A的边长分别为7和1时,是否存在A的“兄弟矩形”B?
小亮同学是这样探究的:
设所求矩形的两边分别是x和y,由题意,得
由①,得 ,③
把③代入②,得 ,
整理,得 .
,
的“兄弟矩形”B存在.