当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市东城区2021-2022学年九年级上学期期末数学试题

更新时间:2022-02-18 浏览次数:90 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2021九上·东城期末) 如图,AB为⊙O的弦,OC⊥AB于点M,交⊙O于点C.若⊙O的半径为10,OM:MC=3:2,求AB的长.

  • 19. (2021九上·东城期末) 下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程.

    已知:⊙O.

    求作:⊙O的内接等腰直角三角形ABC. 

    作法:如图,

    ①作直径AB;

    ②分别以点A, B为圆心,以大于的长为半径作弧,两弧交于M 点;

    ③作直线MO交⊙O于点C,D;

    ④连接AC,BC.

    所以△ABC就是所求的等腰直角三角形.

    根据小明设计的尺规作图过程,解决下面的问题:

    1. (1) 完成下面的证明.

      证明:连接MA,MB.

      ∵MA=MB,OA=OB,

      ∴MO是AB的垂直平分线.

      ∴AC=      ▲       .

      ∵AB是直径,

      ∴∠ACB=      ▲       ( ) (填写推理依据) .

      ∴△ABC是等腰直角三角形.

  • 20. (2021九上·东城期末) 如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c的部分图象经过点A(0,-3),B(1,0) .

     

    1. (1) 求该抛物线的解析式;
    2. (2) 结合函数图象,直接写出y<0时,x的取值范围.
  • 21. (2021九上·东城期末) 如图,在平面直角坐标系xOy中,△OAB的顶点坐标分别为O(0,0),A(5,0), B(4,-3),将△OAB绕点O顺时针旋转90°得到△OA′B′,点A旋转后的对应点为A´.

    1. (1) 画出旋转后的图形△OA′B′,并写出点A′ 的坐标;
    2. (2) 求点B经过的路径的长(结果保留π). 
  • 22. (2021九上·东城期末) 2021年6月17日,神舟十二号成功发射,标志着我国载人航天踏上新征程.某学校举办航天知识讲座,需要两名引导员,决定从A,B,C,D四名志愿者中,通过抽签的方式确定两人.抽签规则:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.
    1. (1) “A志愿者被选中”是 事件(填“随机”或“不可能”或“必然”);
    2. (2) 用画树状图或列表的方法求出A,B两名志愿者同时被选中的概率.
  • 23. (2021九上·东城期末) 已知关于x的一元二次方程
    1. (1) 求证:该方程总有两个实数根;
    2. (2) 若该方程有一个根小于2,求k的取值范围.
  • 24. (2021九上·东城期末) 为了改善小区环境,某小区决定在一块一边靠墙(墙长25m)的空地上修建一个矩形小花园ABCD,小花园一边靠墙,另三边用总长40m的栅栏围住,如下图所示.若设矩形小花园AB边的长为xm,面积为ym2

    1. (1) 求y与x之间的函数关系式;
    2. (2) 当x为何值时,小花园的面积最大?最大面积是多少?
  • 25. (2024九上·于都期末) 如图,AC是⊙O的弦,过点O作OP⊥OC交AC于点P,在OP的延长线上取点B,使得BA=BP.

    1. (1) 求证:AB是⊙O的切线;
    2. (2) 若⊙O的半径为4,PC= , 求线段AB的长.
  • 26. (2021九上·东城期末) 在平面直角坐标系xOy中,点(1,m)和(2,n)在抛物线上.
    1. (1) 若m=0,求该抛物线的对称轴;
    2. (2) 若mn<0,设抛物线的对称轴为直线

      ①直接写出t的取值范围;

      ②已知点(-1,y1),( , y2),(3,y3)在该抛物线上.比较y1 , y2 , y3的大小,并说明理由.

  • 27. (2021九上·东城期末) 如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .

    1. (1) 用等式表示 与CP的数量关系,并证明;
    2. (2) 当∠BPC=120°时, 

      ①直接写出 的度数为

      ②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.

  • 28. (2021九上·东城期末) 在平面直角坐标系中,⊙O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到⊙O的弦A´B´(A´,B´分别为A,B的对应点),则称线段AB是⊙O的关于直线l对称的“关联线段”.例如:在图1中,线段是⊙O的关于直线l对称的“关联线段”.

    1. (1) 如图2,的横、纵坐标都是整数.

      ①在线段中,⊙O的关于直线y=x+2对称的“关联线段”是

      ②若线段中,存在⊙O的关于直线y=-x+m对称的“关联线段”,则 

    2. (2) 已知直线交x轴于点C,在△ABC中,AC=3,AB=1,若线段AB是⊙O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长.

微信扫码预览、分享更方便

试卷信息