当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市丰台区2021-2022学年八年级上学期期末数学试题

更新时间:2022-03-08 浏览次数:90 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 21. (2021八上·丰台期末) 如图,点D在 上,点E在 上, ,求证: .

  • 23. (2021八上·丰台期末) 如图,在中,∠°,∠°,⊥AB于点D,交AC于点E,如果 , 求的长.

  • 24. (2021八上·丰台期末) 下面是小东设计的尺规作图过程.

    已知:如图,在Rt中,°.

    求作:点 , 使得点边上,且到的距离相等.

    作法:①如图,以点为圆心,任意长为半径画弧,分别交于点

    ②分别以点为圆心,大于为半径画弧,两弧交于点

    ③画射线 , 交于点

    所以点即为所求.

    根据小东设计的尺规作图过程,

    1. (1) 使用直尺和圆规,补全图形;(保留作图痕迹)
    2. (2) 完成下面的证明.

      证明:过点于点 , 连接

      中,

      (SSS).

      ∴∠                  ▲                  =∠                  ▲                  

      ∵∠=90°,

      .

                        ▲                  ).

  • 25. (2021八上·丰台期末) 北京市以年冬奥会和冬残奥会为契机,大力提升城市服务保障能力,在永定河沿岸,紧邻北京冬奥组委和首钢滑雪大跳台建成冬奥公园.冬奥公园最大的亮点是拥有一条长全封闭的马拉松跑道.马拉松线路设计很有创意,分为智慧跑、公园跑、滨水跑和堤上跑.小明先进行了智慧跑,接着进行了堤上跑,共用时分钟.已知小明在堤上跑路段的平均速度是他在智慧跑路段的平均速度的倍,求小明在进行智慧跑和堤上跑时的平均速度.

  • 26. (2021八上·丰台期末) 在“整式乘法与因式分解”这一章的学习过程中,我们常采用构造几何图形的方法对代数式的变形加以说明.例如,利用图中边长分别为a,b的正方形,以及长为a,宽为b的长方形卡片若干张拼成图2(卡片间不重叠、无缝隙),可以用来解释完全平方公式:

    请你解答下面的问题:

    1. (1) 利用图1中的三种卡片若干张拼成图 , 可以解释等式:
    2. (2) 利用图1中三种卡片若干张拼出一个面积为的长方形ABCD,请你分析这个长方形的长和宽.
  • 27. (2021八上·丰台期末) 中, , 点是直线上一点,点关于射线的对称点为点. 作直线交射线于点 , 连接CF.

    1. (1) 如图 , 点在线段上,补全图形,求的大小(用含的代数式表示);
    2. (2) 如果∠°.

      ①如图 , 当点在线段上时,用等式表示线段之间的数量关系,并证明;

      ②如图 , 当点在线段的延长线上(不与点重合)时,直接写出线段之间的数量关系.

  • 28. (2021八上·丰台期末) 在平面直角坐标系中,作直线l垂直轴于点),已知点),点),以为斜边作等腰直角三角形 , 点在第一象限.关于直线l的对称图形是 . 给出如下定义:如果点M在上或内部,那么称点M是△ABC关于直线l的“称心点”.

    1. (1) 当时,在点),),)中,关于直线l 的“称心点”是
    2. (2) 当上只有1个点是关于直线l的“称心点”时, 直接写出的值;
    3. (3) 点H是关于直线l 的“称心点”,且总有的面积大于的面积,求的取值范围.

微信扫码预览、分享更方便

试卷信息