当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

福建省漳州市2022届高三毕业班数学第二次教学质量检测试卷

更新时间:2022-03-22 浏览次数:110 类型:高考模拟
一、单选题
二、多选题
  • 9. (2022·漳州模拟) 已知函数 , 则下列结论正确的是(     )
    A . 曲线的切线斜率可以是1 B . 曲线的切线斜率可以是 C . 过点且与曲线相切的直线有且只有1条 D . 过点且与曲线相切的直线有且只有2条
  • 10. (2022·漳州模拟) 已知正方体的边长为2,的中点,为侧面上的动点,且满足平面 , 则下列结论正确的是(     )
    A . B . 平面 C . 动点的轨迹长为 D . 所成角的余弦值为
  • 11. (2022·漳州模拟) 关于函数 , 下列结论正确的是(     )
    A . 为偶函数 B . 在区间单调递减 C . 的值域为 D . 时,方程有8个解
  • 12. (2022·漳州模拟) 阿基米德的“平衡法”体现了近代积分法的基本思想,他用平衡法求得抛物线弓形(抛物线与其弦所在直线围成的图形)面积等于此弓形的内接三角形(内接三角形的顶点C在抛物线上,且在过弦的中点与抛物线对称轴平行或重合的直线上)面积的.现已知直线与抛物线交于A,B两点,且A为第一象限的点,E在A处的切线为l,线段的中点为D,直线轴所在的直线交E于点C,下列说法正确的是(     )
    A . 若抛物线弓形面积为8,则其内接三角形的面积为6 B . 切线l的方程为 C . , 则弦对应的抛物线弓形面积大于 D . 若分别取的中点 , 过且垂直y轴的直线分别交E于 , 则
三、填空题
四、解答题
  • 17. (2022·漳州模拟) 已知数列的前n项和为 , 在① , ③这三个条件中任选一个,解答下列问题:
    1. (1) 求的通项公式:
    2. (2) 若 , 求数列的前n项和
  • 18. (2022·湖北模拟) 如图,在平面四边形中,对角线平分的内角A,B,C的对边分别为a,b,c,已知

    1. (1) 求B;
    2. (2) 若的面积为2,求
  • 19. (2022·漳州模拟) 如图,圆柱的轴截面是一个边长为2的正方形,点D为棱的中点,为弧上一点,且

    1. (1) 求三棱锥的体积;
    2. (2) 求二面角的余弦值.
  • 20. (2022·漳州模拟) 漳州市某路口用停车信号管理,在某日后的一分钟内有15辆车到达路口,到达的时间如下(以秒作单位):1,4,7,10,14,17,20,22,25,28,30,33,36,38,41.记 , 2,3,…,15,表示第k辆车到达路口的时间,表示第k辆车在路口的等待时间,且 , 记 , M表示a,b中的较大者.
    1. (1) 从这15辆车中任取2辆,求这两辆车到达路口的时间均在15秒以内的概率;
    2. (2) 记这15辆车在路口等待时间的平均值为 , 现从这15辆车中随机抽取1辆,记 , 求的分布列和数学期望;
    3. (3) 通过调查,在该日后的一分钟内也有15辆车到达路口,到达的时间如下:1,4,10,14,15,16,17,18,19,21,25,28,30,32,38.现甲驾驶车辆欲在后一分钟内或后一分钟内某时刻选择一个通过该路口,试通过比较后的一分钟内车辆的平均等待时间,帮甲做出选择.
  • 21. (2022·漳州模拟) 已知椭圆的长轴长为 , 且过点
    1. (1) 求的方程:
    2. (2) 设直线轴于点 , 交C于不同两点 , 点关于原点对称,为垂足.问:是否存在定点 , 使得为定值?
    1. (1) 若 , 求的最小值;
    2. (2) 当时, , 求a的取值范围

微信扫码预览、分享更方便

试卷信息