当前位置: 初中数学 /浙教版(2024) /九年级下册 /第3章 投影与三视图 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2022年初中数学浙教版九年级下册第三章三视图与表面展开图 ...

更新时间:2022-03-28 浏览次数:136 类型:单元试卷
一、单选题
  • 1. (2023·安岳模拟) 如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是(   )

    A . B . C . D .
  • 2. 下图是一个正方体盒子的展开图,把展开图折叠成小正方体后,“御”字所在面的相对面上的字是(   )

    A . B . C . D .
  • 3. (2021九上·商河期末) 如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为(       )

    A . 7.8米 B . 3.2米 C . 2.30米 D . 1.5米
  • 4. (2021·抚顺模拟) 如图,王华晚上由路灯A下的B处走到C处时,测得影子 的长为1m,继续往前走3m到达E处时,测得影子 的长为2m,已知王华的身高是1.5m,那么路灯A的高度 等于(  )

    A . 4.5m B . 6m C . 7.5m D . 8m
  • 5. (2022·包头模拟) 几何体的三视图如图所示,这个几何体是(   )

    A . B . C . D .
  • 6. (2021九下·江阴期中) 如图,已知圆锥侧面展开图的扇形面积为65 cm2,扇形的弧长为10 cm,则圆锥母线长是( )

    A . 5cm B . 10cm C . 12cm D . 13cm
  • 7. (2021九上·泰山期末) 如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为(       )

    A . 3 B . 4 C . 5 D . 6
  • 8. (2021九上·信都月考) 如图所示,矩形纸片ABCD中,AB=4cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AD的长为(   )

    A . 8cm B . 7cm C . 6cm D . 5cm
  • 9. (2021·光明模拟) 某校积极开展综合实践活动,一次九年级数学小组发现校园里有一棵被强台风摧折的大树,其残留的树桩DC的影子的一端E刚好与倒地的树梢重合,于是他们马上利用其测量旁边钟楼AB的高度.如图是根据测量活动场景抽象出的平面图形.活动中测得的数据如下:

     

    ①大树被摧折倒下的部分DE=10m;

    ②tan∠CDE

    ③点E到钟楼底部的距离EB=7m;

    ④钟楼AB的影长BF=(20 +8)m;

    ⑤从D点看钟楼顶端A点的仰角为60°.

    (点CEBF在一条直线上).

    请你选择几个需要的数据,用你喜欢的方法求钟楼AB的高度,则AB=(  )

    A . 15 m B . (15 +6)m C . (12 +6)m D . 15m
  • 10. (2021·苏州) 如图,线段 ,点 上, .已知点 从点 出发,以每秒1个单位长度的速度沿着 向点 移动,到达点 后停止移动,在点 移动过程中作如下操作:先以点 为圆心, 的长为半径分别作两个圆心角均为60°的扇形,再将两个扇形分别围成两个圆锥的侧面.设点 的移动时间为(秒).两个圆锥的底面面积之和为 .则 关于 的函数图象大致是(   )

    A . B . C . D .
二、填空题
三、综合题
  • 17. (2021七上·普宁期中) 用若干个大小相同的小立方块搭建一个几何体,从正面和上面观察这个几何体得到下面两幅形状图.

       

    (从正面看)         (从上面看)

    1. (1) 请画出一种从左面看这个几何体得到的形状图;
    2. (2) 搭建这个几何体最少要用a=个小立方块,最多用b=个小立方块;
    3. (3) 在(2)的条件下,若有理数x,y满足 ,且 ,求 的值.
  • 18. (2021九上·舞钢期末) 如图,A、B、C分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.

    1. (1) 请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.
    2. (2) 若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.
  • 19. (2022七下·泾阳月考) 如图所示的是一个正方体的展开图,折成正方体后,x,y与其相对面上的数字相等,求xy的值.

     

  • 20. (2021九上·南海期末) 如图,公路旁有两个高度相等的路灯AB、CD,小明上午上学时发现路灯AB在太阳光下的影子恰好落在路牌底部E处,他自己的影子恰好落在路灯CD的底部C处;晚自习放学时,站在上午同一个地方,发现在路灯CD的灯光下自己的影子恰好落在E处.

    1. (1) 在图中画出小明的位置(用线段FG表示).
    2. (2) 若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E恰好2米,求路灯高.
  • 21. (2021九上·铁西期末) 小明同学要测量学校旗杆AB的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为0.8米,同时测量旗杆AB的影长时,由于影子不全落在地面上,他测得地面上的影长BC为6米,留在墙上的影高CD为3米,请利用以上信息,求旗杆AB的高度.

  • 22. (2021九上·深圳期末) 【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:

    ①根据光源确定榕树在地面上的影子;

    ②测量出相关数据,如高度,影长等;

    ③利用相似三角形的相关知识,可求出所需要的数据.

    根据上述内容,解答下列问题:

    1. (1) 已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
    2. (2) 如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
    3. (3) 无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
  • 23. (2022八下·广元月考) 长方体的长为20cm,宽为10cm,高为15cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是多少?

  • 24. (2021·苏州模拟) 测量金字塔高度:如图1,金字塔是正四棱锥 ,点O是正方形 的中心 垂直于地面,是正四棱锥 的高,泰勒斯借助太阳光.测量金字塔影子 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 表示.

    1. (1) 测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 的边长为 ,金字塔甲的影子是 ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.
    2. (2) 测量乙金字塔高度:如图1,乙金字塔底座正方形 边长为 ,金字塔乙的影子是 ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.

微信扫码预览、分享更方便

试卷信息