当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

福建省名校联盟全国优质校2022届高三数学大联考试卷

更新时间:2022-03-29 浏览次数:128 类型:高考模拟
一、单选题
二、多选题
  • 9. (2022·福建模拟) 在研究某种产品的零售价(单位:元)与销售量(单位:万件)之间的关系时,根据所得数据得到如下所示的对应表:

    12

    14

    16

    18

    20

    17

    16

    14

    13

    11

    利用最小二乘法计算数据,得到的回归直线方程为: , 则下列说法中正确的是(   )

    A . B . C . 回归直线必过点(16,14.2) D . 若该产品的零售价定为22元,则销售一定是9.7万件
  • 10. (2022·福建模拟) 已知向量 , 则( )
    A . 垂直,则 B . , 则的值为-2 C . , 则 D . , 则的夹角为45°
  • 11. (2022·福建模拟) 已知是正项等差数列,其公差为 , 若存在常数 , 使得对任意正整数均有 , 则以下判断不正确的是(   )
    A . B . d=0 C . D .
  • 12. (2022·福建模拟) 已知A,B,C,D是表面积为20π的球体表面上四点,且 , 则( )
    A . , 则平行直线AB与CD间距离的最大值为3 B . , 则平行直线AB与CD间距离的最小值为 C . 若A,B,C,D四点能构成三棱锥,则该三棱锥体积的最大值为4 D . , 则
三、填空题
四、解答题
  • 17. (2022·福建模拟) 已知的内角的对边分别为a, , c,.
    1. (1) 求角A;
    2. (2) 若 , 求边上的高.
  • 18. (2022·益阳模拟) 为数列的前项和,已知 , 且.
    1. (1) 求数列的通项公式
    2. (2) 数列依次为: , 2、 , 规律是在中间插入项,所有插入的项构成以2为首项,2为公比的等比数列,求数列的前50项的和.
  • 19. (2022·福建模拟) 为了买到包括星黛露毛线玩具,达菲雪莉玫和星黛露毛绒玩具钥匙圈等商品,12月29日凌晨,约5000名游客在上海迪士尼外夜排长龙,此现象在网络上引发了广泛讨论.为了解广大民对下通玩偶的喜爱程度,某市一玩具商城随机抽取了100名市民,以分数表示对卡通玩偶的喜爱程度(喜爱程度越高,分数越高,满分为100分)到如下频率分布直方图. 

    1. (1) 试估计该市市民对卡通玩偶平均喜爱程度的分数值;
    2. (2) 用上述100名市民对玩偶喜爱程度分数值的频率分布估算所有排队游客分数值的概率分布,在所有游客中随机抽取2人,对分数值在区间内的游客送一个玩偶,分数值在区间内的游客赠送两个玩偶,分数值低于70分的游客不送玩偶,记总共送出的玩偶个数为 , 求.
  • 20. (2022·益阳模拟) 如图,四棱锥中,为线段上一点,平面 , 平面平面.

    1. (1) 求
    2. (2) 若三棱锥体积为 , 求二面角的余弦值.
  • 21. (2022·福建模拟) 设抛物线E:的焦点为F,抛物线上一点满足.
    1. (1) 求抛物线E的方程;
    2. (2) 两不同直线均过点F,且交抛物线E于两点,交抛物线于B,D两点.设直线AB和CD分别与轴交于点和点 , 求的值.
  • 22. (2022·福建模拟) 已知函数 , 其中.
    1. (1) 若定义在上的函数满足 , 求的单调区间;
    2. (2) 证明:有唯一极值点 , 且.

微信扫码预览、分享更方便

试卷信息