杨一:第99个数是99;
张三:第2022个数是2;
李四:前101个数的和为2652;
王五,前200个数中有7个完全平方数;
四个结论正确的有( )个
①从左到右有三张不重复的扑克牌,这三张牌中不是红桃就是方块;
②红桃右边有且仅有一张方块;
③6的左边至少有一张是8;
④8的右边至少有一张是8.
请写出这三张牌从左到右的顺序可能是:.(填写正确的序号)
①红桃8,方块6,方块8②红桃8,红桃6,方块8③红桃8,方块8,红桃6
图2中,由2个相同的平行四边形拼成一排的图形,这图形中可以找到3个平行四边形;
图3中,由3个相同的平行四边形拼成一排的图形,这图形中可以找到6个平行四边形;
由此我们可以提出一个这样的问题:
图4中,由4个相同的平行四边形拼成一排的图形中,可以找到几个平行四边形?
答:10个
请你根据以上事实,将一些相同的平行四边形横向或纵向拼接,由此提出一个数学问题,并写出答案.
例:将 化为分数形式,
由于 ,设 ,①
得 ,②
②−①得 ,解得 ,于是得 .
同理可得 , .
根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)
(类比应用)
, ;(注 , )
若已知 ,则 .
⇒ +( )2=1﹣( )2;
⇒ +( )2+( )3=
⇒ +( )2+( )3+( )4=
(规律探究)观察下图:
根据以上发现,用含n的代数式填空: +( )2+( )3+( )4+( )5+…+( )n=.
(解决问题)根据以上发现,计算: =.
(问题)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)
(探究)不妨假设有an种不同的镶嵌方案.为探究an的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.
探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?
如图(1),显然只有1种镶嵌方案.所以,a1=1.
探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?
如图(2),显然只有2种镶嵌方案.所以,a2=2.
探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?
一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;
二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;
如图(3).所以,a3=1+2=3.
一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有 种镶嵌方案;
二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有 种镶嵌方案;
所以,a4= .
(仿照上述方法,写出探究过程,不用画图)
……
(结论)用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?
(直接写出an与an﹣1 , an﹣2的关系式,不写解答过程).
(应用)用10个2×1矩形,镶嵌一个2×10矩形,有 ▲ 种不同的镶嵌方案.
问题的转化:由n上面问题比较复杂,所以我们先来研究跟它类似的一个较简单的问题:
n条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…
①请你仿照前面的推导过程,写出“5条直线最多可以把平面分割成多少个部分”的推导过程(只写推导过程,不画图);
②根据递推规律用n的代数式填空:n条直线最多可以把平面分割成几个部分.
问题的解决:借助前面的研究,我们继续开头的问题;n个平面最多可以把空间分割成多少个部分?
首先,很明显,空间中画出1个平面时,会得到1+1=2个部分;所以,1个平面最多可以把空间分割成2个部分;
空间中有2个平面时,新增的一个平面与已知的1个平面最多有1条交线,这1条交线会把新增的这个平面最多分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个平面最多可以把空间分割成4个部分;
空间中有3个平面时,新增的一个平面与已知的2个平面最多有2条交线,这2条交线会把新增的这个平面最多分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,所以,3个平面最多可以把空间分割成8个部分;
空间中有4个平面时,新增的一个平面与已知的3个平面最多有3条交线,这3条交线会把新增的这个平面最多分成7部分,从而多出7个部分,即总共会得到1+1+2+4+7=15个部分,所以,4个平面最多可以把空间分割成15个部分;
空间中有5个平面时,新增的一个平面与已知的4个平面最多有4条交线,这4条交线会把新增的这个平面最多分成11部分,而从多出11个部分,即总共会得到1+1+2+4+7+11=26个部分,所以,5个平面最多可以把空间分割成26个部分;…
③请你仿照前面的推导过程,写出“6个平面最多可以把空间分割成多少个部分?”的推导过程(只写推导过程,不画图);
④根据递推规律填写结果:10个平面最多可以把空间分割成几个部分;
⑤设n个平面最多可以把空间分割成Sn个部分,设n-1个平面最多可以把空间分割成Sn−1个部分,前面的递推规律可以用Sn−1和n的代数式表示Sn;这个等式是Sn等于多少.
(探究)为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进转化,最后猜想得出结论.不妨假设n边形的分割方案有 种.
探究一:用四边形的对角线把四边形分割成2个三角形,共有多少种不同的分割方案?如图①,图②,显然,只有2种不同的分割方案.所以, .
探究二:用五边形的对角线把五边形分割成3个三角形,共有多少种不同的分割方案?不妨把分割方案分成三类:
第1类:如图③,用点 , 与 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案,所以,此类共有 种不同的分割方案.
第2类:如图④,用点 , 与 连接,把五边形分割成3个三角形,有1种不同的分割方案,可视为 种分割方案.
第3类:如图⑤,用点 , 与 连接,先把五边形分割转化成1个三角形和1个四边形,再把四边形分割成2个三角形,由探究一知,有f(4)种不同的分割方案,所以,此类共有f(4)种不同的分割方案.
所以, (种)
探究三:用六边形的对角线把六边形分割成4个三角形,共有多少种不同的分割方案?不妨把分割方案分成四类:
第1类:如图⑥,用 , 与 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有 种不同的分割方案,所以,此类共有 种不同的分割方案.
第2类:如图⑦,用 , 与 连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案.所以,此类共有 种分割方案.
第3类:如图⑧,用 , 与 连接,先把六边形分割转化成2个三角形和1个四边形.再把四边形分割成2个三角形,由探究一知,有 种不同的分割方案.所以,此类共有 种分割方案.
第4类:如图,用 , 与 连接,先把六边形分割转化成1个三角形和1个五边形,再把五边形分割成3个三角形,由探究二知,有 种不同的分割方案.所以,此类共有 种分割方案.
所以,
(种)
探究四:用七边形的对角线把七边形分割成5个三角形,则 与 的关系为 ,共有种不同的分割方案.
……
(结论)用 边形的对角线把 边形分割成 个三角形,共有多少种不同的分割方案 ?(直接写出 与 之间的关系式,不写解答过程)
(应用)用九边形的对角线把九边形分割成7个三角形,共有多少种不同的分割方案?(应用上述结论中的关系式求解)