如图1,分别将AC,BC边2等分,D1 , E1是其分点,连接AE1 , BD1交于点F1 , 得到四边形CD1F1E1 , 其面积S1= .
如图2,分别将AC,BC边3等分,D1 , D2 , E1 , E2是其分点,连接AE2 , BD2交于点F2 , 得到四边形CD2F2E2 , 其面积S2= ;
如图3,分别将AC,BC边4等分,D1 , D2 , D3 , E1 , E2 , E3是其分点,连接AE3 , BD3交于点F3 , 得到四边形CD3F3E3 , 其面积S3= ;
…
按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnFnEn , 其面积Sn=.
要求:
⑴所画的两个三角形都与△ABC相似但都不与△ABC全等.
⑵图②和图③中新画的三角形不全等.
在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1 .
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD1)2的值.