①求证:CD=2AE.
②若AE+CD=DE,求k.
③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
如图,在平面直角坐标系 中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数 ( >0)的图象经过线段OC的中点A(3,2),交DC于点E,交BC于点F.设直线EF的解析式为 .
如图1,已知点A(﹣1,0),点B(0,﹣2),AD与y轴交于点E,且E为AD的中点,双曲线y= 经过C,D两点且D(a,4)、C(2,b).
如图1,正方形ABCD顶点A、B在函数y= (k﹥0)的图像上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.
①求证:四边形ABCD是正方形;
②试探索:将正方形ABCD沿 轴向左平移多少个单位长度时,点C恰好落在双曲线 ( > )上.
平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣ (x<0)的图象上,A、B的横坐标分别为a、b.
如图,在平面直角坐标系中有Rt△ABC,∠BAC=90°,AB=AC,A(﹣3,0),B(0,1),C(m,n).
①求证:四边形ABCD是正方形;
②试探索:将正方形ABCD沿 轴向左平移多少个单位长度时,点C恰好落在双曲线 ( > )上.