当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省青岛市市北区2021-2022学年下学期期中质量检测数...

更新时间:2024-07-13 浏览次数:236 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 15. (2022·青岛模拟) 如图是一张形状为四分之一圆的纸片,要在纸片上裁剪出一个尽可能大的正方形,请你在图中做出这个正方形.

    1. (1) 化简:
    2. (2) 解不等式组
  • 17. (2022·德州模拟) 某校组建了射击兴趣小组,甲、乙两人连续8次射击成绩如下列图、表所示(统计图中乙的第8次射击成绩缺失).

    甲、乙两人连续射击8次成绩统计表


    平均成绩(环)

    中位数(环)

    方差(环2

    7.5

    6

    3.5

    1. (1) 乙的第8次射击成绩是环;
    2. (2) 补全统计图;
    3. (3) 如果你是教练,要从甲、乙两人中选一位参加比赛,你会选择谁?写出你这样选择的2条理由.
  • 18. (2022·昆明模拟) 小亮是个集邮爱好者,他收集了如图所示的四张纪念邮票(除正面内容不同外,其余均相同),现将四张邮票背面朝上,洗匀放好

    1. (1) 小亮从中随机抽取一张邮票是“冬奥会吉祥物冰墩墩”的概率是
    2. (2) 小亮从中随机抽取一张邮票(不放回),再从余下的邮票中随机抽取一张,求抽到的两张邮票恰好是“冬奥会会徽”和“冬奥会吉祥物冰墩墩”的概率.(这四张邮票从左到右依次分别用字母A、B、C、D表示)
  • 19. (2022·青岛模拟) 矗立在高速公路水平地面上的交通示警牌如图所示,测量得到如下数据:∠B=90°,∠BDC=72°,∠E=35°,CD=2.8米,BE=7.5米.求线段AC的长.(结果精确到0.1米)

    (参考数据:sin35° , cos35° , tan35° , sin72° , cos72° , tan72°

  • 20. (2022·青岛模拟) 崂山茶是青岛的特产之一,某崂山茶企业为了扩大生产规模,计划投入一笔资金购进甲、乙两种设备.已知购进2件甲设备和1件乙设备共需3.5万元;购进1件甲设备和3件乙设备共需3万元.
    1. (1) 求购进1件甲设备和1件乙设备分别需要多少万元;
    2. (2) 如果扩大规模后,在一个季度内,每件甲设备能为企业增加0.5万元利润,每件乙设备能为企业增加0.2万元利润.该企业计划购进甲、乙两种设备共10件,且投入资金不超过12万元,求应该如何采购甲、乙两种设备,才能使企业这个季度的利润最大?
  • 21. (2022·青岛模拟) 如图,延长平行四边形ABCD的边AD到F,使DF=AD,连接BF,交DC于点E,延长CD至点G,使DG=DE,分别连接AE、AG、FG.

    1. (1) 求证:△BCE≌△FDE;
    2. (2) 当平行四边形ABCD的边或角满足什么条件时,四边形AEFG是菱形?证明你的结论.
  • 22. (2022·青岛模拟) 手榴弹作为一种威力较大,体积较小,方便携带的武器,在战争中能发挥重要作用,然而想把手榴弹扔远,并不是一件容易的事.军训中,借助小山坡的有利地势,小刚在教官的指导下用模拟弹进行一次试投:如图所示,把小刚投出的手榴弹的运动路线看做一条抛物线,手榴弹飞行的最大高度为12米,此时它的水平飞行距离为6米,山坡OA的坡度为1:3.

    1. (1) 求这条抛物线的表达式;
    2. (2) 山坡上A处的水平距离OE为9米,A处有一棵树,树高5米,则小刚投出的手榴弹能否越过这棵树?请说明理由;
    3. (3) 求飞行的过程中手榴弹离山坡的最大高度是多少米.
  • 23. (2022·青岛模拟) 定义:

    如果一个正整数n能表示为两个正整数的平方差,那么称正整数n为“智慧数”,即:若正整数n=a2-b2(a,b为正整数,且a>b),则称正整数n为“智慧数”.例如:∵5=32-22 , ∴5是“智慧数”.根据定义,直接写出最小的“智慧数”是

    提出问题:

    如果按照从小到大的顺序排列起来,那么第2022个“智慧数”是哪位数?

    探究问题:

    要解答这个问题,我们先要明白“智慧数”产生的规律.

    探究1:“智慧数”一定是什么数?

    假设n是“智慧数”,则至少存在一组正整数a、b,使n=a2-b2(a,b为正整数,且a>b).

    情况1:a、b均为奇数,或均为偶数.

    分析:

    ∵a、b均为奇数,或均为偶数

    ∴(a+b)、(a-b)均为偶数

    此时不妨设(a+b)=2c,(a-b)=2d

    又∵n=a2-b2=(a+b)(a-b)=4cd

    ∴a2-b2为4的倍数,即n为4的倍数.

    情况2:a、b为一奇数、一偶数.

    分析:

    ∵a、b为一奇数、一偶数

    ∴(a+b)、(a-b)均为奇数

    此时不妨设(a+b)=2c1,(a-b)=2d1

    又∵n=a2-b2=(a+b)(a-b)=4cd2c2d1

    ∴a2-b2为奇数,即n为奇数.

    综上所述:“智慧数”为奇数或4的倍数.

    探究2:所有奇数和4的倍数都一定“智慧数”吗?

    我们先从最简单的情形入手,从中找到解决问题的方法,最后得出一般性的结论.

    先举例几组数值较小,容易验证的“智慧数”(①--⑧),因为“智慧数”不是奇数就是4的倍数,所以我们把这“智慧数”分成两类.

    情况1:n是奇数

     

    分析n=a2-b2

    结论

    3是“智慧数”

    5是“智慧数”

    7是“智慧数”

    9是“智慧数”

    ……

    ……

    ……

    情况2:n是4的倍数

     

    分析n=a2-b2

    结论

    8是“智慧数”

    12是“智慧数”

    16是“智慧数”

    20是“智慧数”

    ……

    ……

    ……

    情况1:n是奇数

    观察①②③④中n、a、b的值,容易发现,每个算式中,n均是奇数,且a、b的值均为连续的正整数.

    猜想:所有奇数都是“智慧数”.

    验证:设a=k+1,b=k(k≥1,且k为整数)

    ∵a2-b2=(k+1)2-k2=2k+1

    ∴2k+1是“智慧数”

    又∵k≥1

    ∴2k+1≥3,即2k+1表示所有奇数(1除外)

    ∴所有奇数(1除外)都是“智慧数”

    应用:

    请直接填空:∵11= 2-2   ∴11是“智慧数”

    情况2:n是4的倍数.

    观察⑤⑥⑦⑧中n、a、b的值,容易发现,每个算式中,n均是4的倍数,且a、b的差都为2.

    猜想:所有4的倍数都是“智慧数”.

    验证:设a=k+2,b=k(k≥1,且k为整数)

    ∵a2-b2=(k+2)2-k2=4k+4

    ∴4k+4是“智慧数”

    又∵k≥1

    ∴4k+4≥8,即4k+4表示所有4的倍数(4除外)

    ∴所有4的倍数(4除外)都是“智慧数”

    应用:

    请直接填空:∵24= 2- 2  ∴24“智慧数”

    归纳“智慧数”的发现模型:

    ⑴对所有的正整数而言,除了1和4之外,其余的奇数以及4的倍数是智慧数.

    ⑵当1≤n≤4时,只有1个“智慧数”;

    当n≥5时,如果把从5开始的正整数按照从小到大的顺序,依次每个连续正整数分成一组(注:组与组之间的数字互不重复),则每组有个“智慧数”,且第个数不是“智慧数”.

    问题解决:

    直接写出:如果按照从小到大的顺序排列起来,那么第2022个“智慧数”是

    实际应用:

    若一个直角三角形纸片三边的长度都是整数厘米,已知一条直角边长是12cm,则这个直角三角形纸片的周长最大是cm.

  • 24. (2022·青岛模拟) 如图,在△ABC中,∠ACB=90°,AC=12,BC=9,点D为边AB的中点.点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动;同时点Q从点C出发,以每秒2个单位的速度沿CB方向运动,以DP、DQ为邻边构造平行四边形PEQD.设点P运动的时间为t秒,

    1. (1) 求当t为何值时,
    2. (2) 设平行四边形PEQD的面积为S(),求S关于t之间的函数关系式;
    3. (3) 连接CD,是否存在某一时刻t,CD经过平行四边形PEQD的对称中心O?若存在,求出t的值;若不存在,请说明理由;

微信扫码预览、分享更方便

试卷信息