当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省泰安市宁阳县2022年(五四制)中考一模数学试题

更新时间:2024-07-13 浏览次数:64 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. 如图,已知反比例函数 与正比例函数 的图象交于 两点.

    1. (1) 求该反比例函数的表达式;
    2. (2) 若点 轴上,且 的面积为3,求点 的坐标.
  • 21. (2022·宁阳模拟) 如图①,在平行四边形 中,将对角线 分别向两端延长到点E和F,使得 ,连接

    1. (1) 求证:
    2. (2) 如图②,连接 ,若 ,四边形 是何种特殊四边形?
  • 22. (2022·宁阳模拟) 已知正方形ABCDEF为平面内两点.

    1. (1) (探究建模)

      如图1,当点E在边AB上时, ,且BCF三点共线,求证:

    2. (2) (类比应用)

      如图2,当点E在正方形ABCD外部时, ,且ECF三点共线.猜想并证明线段AECEDE之间的数量关系;

  • 23. (2022·宁阳模拟) 随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=  ,y与t的函数关系如图所示.

    1. (1) 设每天的养殖成本为m元,收购成本为n元,求m与n的值;
    2. (2) 求y与t的函数关系式;
    3. (3) 如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?

      (总成本=放养总费用+收购成本;利润=销售总额﹣总成本)

  • 24. (2022·宁阳模拟) 如图,△ABC是 的内接三角形,过点C作 的切线交BA的延长线于点F,AE是 的直径,连接EC

    1. (1) 求证:
    2. (2) 若AB=BC,AD⊥BC于点D,FC=4,FA=2,求AD·AE的值
  • 25. (2022·宁阳模拟) 已知抛物线 (a为常数,

    1. (1) 求该抛物线的对称轴和顶点坐标(用含a的代数式表示);
    2. (2) 若 .且 是该抛物线上的两点,且 ,求m的取值范围;
    3. (3) 如图,当 时,设该抛物线与x轴分别交于A、B两点,点A在点B的左侧,与y轴交于点C.点D是直线 上方抛物线上的一个动点, 于点E,设点D的横坐标为t,记 ,当t为何值时,S取得最大值?并求出S的最大值.

微信扫码预览、分享更方便

试卷信息