如图①,是一张直角三角形纸片,∠B=90°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其符合题意性,并得出:矩形的最大面积与原三角形面积的比值为.
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC= , 木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
①如图2,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上,设矩形ABCD的周长为为l,求l的最大值
②如图3,过原点作一条直线y=x,交抛物线于M,交抛物线的对称轴于N,P为直线OM上一动点,过点P作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以点P、N、Q为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由