当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市2022年中考数学试卷

更新时间:2022-06-23 浏览次数:979 类型:中考真卷
一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
  • 1. 圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为( )

    A . -8℃ B . -4℃ C . 4℃ D . 8℃
  • 2. (2023·绍兴模拟) 国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为( )
    A . 14.126×108 B . 1.4126×109 C . 1.4126×108 D . 0.14126×1010
  • 3. (2022·杭州) 如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=( )

    A . 10° B . 20° C . 30° D . 40°
  • 4. 已知a,b,c,d是实数,若a>b,c=d,则( )
    A . a+c>b+d B . a+b>c+d C . a+c>b-d D . a+b>c-d
  • 5. 如图,CD⊥AB于点D,已知∠ABC是钝角,则( )

    A . 线段CD是△ABC的AC边上的高线 B . 线段CD是△ABC的AB边上的高线 C . 线段AD是△ABC的BC边上的高线 D . 线段AD是△ABC的AC边上的高线
  • 6. (2022·杭州) 照相机成像应用了一个重要原理,用公式 (v≠f)表示,其中f表示照相机镜头的焦距,μ表示物体到镜头的距离,v表示胶片(像)到镜头的距离.已知f,v,则μ=( )
    A . B . C . D .
  • 7. 某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A票的总价与19张B票的总价相差320元,则( )
    A . B . C . |10x-19y|=320 D . |19x-10y|=320
  • 8. (2022·杭州) 如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在M1( ,0),M2( ,-1),M3(1,4),M4(2, )四个点中,直线PB经过的点是( )

    A . M1 B . M2 C . M3 D . M4
  • 9. 已知二次函数y=x2+ax+b(a,b为常数).命题①:该函数的图象经过点(1,0);命题②:该函数的图象经过点(3,0);命题③:该函数的图象与x轴的交点位于y轴的两侧;命题④;该函数的图象的对称轴为直线x=1.如果这四个命题中只有一个命题是假命题,则这个假命题是( )
    A . 命题① B . 命题② C . 命题③ D . 命题④
  • 10. (2023·德城模拟) 如图,已知△ABC内接于半径为1的⊙O,∠BAC=θ(θ是锐角),则△ABC的面积的最大值为( )

    A . cosθ(1+cosθ) B . cosθ(1+sinθ) C . sinθ(1+sinθ) D . sinθ(1+cosθ)
二、填空题:本大题有6个小题,每小题4分,共24分
三、解答题:本大题有7个小题,共66分.解答题应写出文字说明、证明或演算步骤.
  • 17. (2022·杭州) 计算:(-6) ×( -■)-23

    圆圆在做作业时,发现题中有一个数字被墨水污染了。

    1. (1) 如果被污染的数字是 .请计算(-6)×( - )-23
    2. (2) 如果计算结果等于6,求被污染的数字.
  • 18. (2022·杭州) 某校学生会要在甲、乙两位候选人中选择一人担任文艺部干事,对他们进行了文化水平、艺术水平、组织能力的测试,根据综合成绩择优录取.他们的各项成绩(单项满分100分)如下表所示:

    候选人

    文化水平

    艺术水平

    组织能力

    80分

    87分

    82分

    80分

    96分

    76分

    1. (1) 如果把各项成绩的平均数作为综合成绩,应该录取谁?
    2. (2) 如果想录取一名组织能力较强的候选人,把文化水平、艺术水平、组织能力三项成绩分别按照20%,20%,60%的比例计入综合成绩,应该录取谁?
  • 19. 如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,连接DE,EF.已知四边形BFED是平行四边形,

    1. (1) 若AB=8,求线段AD的长.
    2. (2) 若△ADE的面积为1,求平行四边形BFED的面积.
  • 20. 设函数y1= ,函数y2=k2x+b(k1 , k2 , b是常数,k1≠0,k2≠0).
    1. (1) 若函数y1和函数y2的图象交于点A(1,m),点B(3,1),

      ①求函数y1 , y2的表达式:

      ②当2<x<3时,比较y1与y2的大小(直接写出结果).

    2. (2) 若点C(2,n)在函数y1的图象上,点C先向下平移2个单位,再向左平移4个单位,得点D,点D恰好落在函数y1的图象上,求n的值,
  • 21. (2022八上·杭州期中) 如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.

    1. (1) 求证:CE=CM.
    2. (2) 若AB=4,求线段FC的长.
  • 22. (2022·杭州) 设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.
    1. (1) 若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.
    2. (2) 若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.
    3. (3) 设一次函数y2=x-m(m是常数),若函数y1的表达式还可以写成y1=2(x-m)(x-m-2)的形式,当函数y=y1-y2的图象经过点(x0 , 0)时,求x0-m的值.
  • 23. (2022·杭州) 在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且AE=2BF,连接EF,以EF为边在正方形ABCD内作正方形EFGH.

    1. (1) 如图1.若AB=4,当点E与点M重合时,求正方形EFGH的面积
    2. (2) 如图2.已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.

      ①求证:EK=2EH;

      ②设∠AEK=α,△FGJ和四边形AEHI的面积分别为S1、S2

      求证: =4sin2α-1.

微信扫码预览、分享更方便

试卷信息