当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西百色市2022年中考数学试卷

更新时间:2022-08-17 浏览次数:277 类型:中考真卷
一、单选题
二、填空题
  • 13. (2024九下·秦安模拟) 负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作米.
  • 15. (2022·百色) 如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC的大小为

  • 16. (2024·广西模拟) 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为米.

  • 17. (2022七上·长兴月考) 小韦同学周末的红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(和路程)数据如下表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米抵达纪念馆,则小韦家到纪念馆的路程是千米.

    t小时

    0.2

    0.6

    0.8

    s千米

    20

    60

    80

  • 18. (2022·百色) 为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取,甲、乙、丙三位应聘者的测试成绩(10分制)如表所示,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课“项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中(填:甲、乙或丙)将被淘汰.

    成绩

    应聘者




    学历

    9

    8

    9

    笔试

    8

    7

    9

    上课

    7

    8

    8

    现场答辩

    8

    9

    8

三、解答题
  • 20. (2022·百色) 解不等式2x+3-5,并把解集在数轴上表示出来.
  • 21. (2022·百色) 已知:点 A(1,3)是反比例函数(k≠0)的图象与直线( m≠0)的一个交点.

    1. (1) 求k 、m的值:
    2. (2) 在第一象限内,当时,请直接写出x的取值范围
  • 22. (2023八上·潮南期末) 校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD,其中 AB=CD=2米,AD=BC=3米,∠B=

    1. (1) 求证:△ABC≌△CDA ;
    2. (2) 求草坪造型的面积.
  • 23. (2022·百色) 学校举行“爱我中华,明诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x(满分100分)分成四个等级(A:90≤x≤100,B:80≤x<90,C:70≤x<80,D:60≤x<70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.根据信息作答:

    1. (1) 参赛班级总数有个;m=
    2. (2) 补全条形统计图:
    3. (3) 统计发现D等级中七年级、八年级各有两个班,为了提高D等级班级的朗诵水平,语文组老师计划从D等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).
  • 24. (2022·百色) 金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:
    1. (1) 甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?
    2. (2) 金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费 W(单位:元)的范围?
  • 25. (2022·百色) 如图,AB为圆的直径, C是⊙O上一点,过点C的直线交AB的延长线于点M.作AD⊥MC,垂足为D,已知AC平分∠MAD .

    1. (1) 求证:MC是⊙O的切线:
    2. (2) 若 AB=BM=4,求 tan∠MAC的值
  • 26. (2023·阳信模拟) 已知抛物线经过A(-1,0)、B(0、3)、 C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM ,交BC于点F 

    1. (1) 求抛物线的表达式;
    2. (2) 求证:∠BOF=∠BDF :
    3. (3) 是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长

微信扫码预览、分享更方便

试卷信息