当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市石景山区2022年中考一模数学试题

更新时间:2022-07-25 浏览次数:127 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2022·石景山模拟) 解不等式组:并写出它的最大整数解.
  • 20. (2022·石景山模拟) 已知:如图,Rt△ABC中,∠ACB=90°,CB<CA.

    求作:线段AB上的一点M,使得∠MCB=∠A. 

    作法:①以点C为圆心,CB长为半径作弧,交AB于点D; 

    ②分别以点B,D为圆心,大于BD长为半径作弧,两弧在AB的右侧相交于点E; 

    ③作直线CE,交AB于点M.∠MCB即为所求. 

    根据小伟设计的尺规作图过程,

    1. (1) 使用直尺和圆规,补全图形(保留作图痕迹);
    2. (2) 完成下面的证明.

      证明:连接CD,ED,EB.

      ∵CD=CB,ED=EB,

      ∴CE是DB的垂直平分线(        )(填推理的依据).

      ∴CM⊥AB.

      ∴∠MCB+∠B=90°.

      ∵∠ACB=90°,

      ∴∠A+∠B=90°.

      ∴∠MCB=∠A(          )(填推理的依据).

  • 21. (2022·石景山模拟) 已知:关于x的一元二次方程
    1. (1) 求证:不论m取何值,方程总有两个不相等的实数根;
    2. (2) 选择一个你喜欢的整数m的值代入原方程,并求出这个方程的解.
  • 22. (2023·玉林模拟) 如图所示,△ABC中,∠ACB=90°,D,E分别为AB,BC的中点,连接DE并延长到点F,使得EF=DE,连接CD,CF,BF.

    1. (1) 求证:四边形BFCD是菱形;
    2. (2) 若cosA= , DE=5,求菱形BFCD的面积.
  • 23. (2022·石景山模拟) 在平面直角坐标系xOy中,直线与直线交于点
    1. (1) 当时,求n,b的值;
    2. (2) 过动点且垂直于x轴的直线与的交点分别是C,D.当时,点C位于点D上方,直接写出b的取值范围.
  • 24. (2022·石景山模拟) 如图,AB为⊙O的直径,C,D为⊙O上两点,= , 连接AC,BC,AD,BD,过点D作DE//AB交CB的延长线于点E.

    1. (1) 求证:直线DE是⊙O的切线;
    2. (2) 若AB=10,BC=6,求AD,BE的长.
  • 25. (2022·石景山模拟) 2022年是中国共产主义青年团成立100周年,某中学为普及共青团知识,举行了一次知识竞赛(百分制).为了解七、八年级学生的答题情况,从中各随机抽取了20名学生的成绩,并对数据(成绩)进行了整理、描述和分析.下面给出部分信息.

    a.七年级学生竞赛成绩的频数分布表及八年级学生竞赛成绩的扇形统计图:

    分组/分数

    频数

    频率

    50≤x<60

    1

    0.05

    60≤x<70

    2

    0.10

    70≤x<80

    5

    0.25

    80≤x<90

    7

    m

    90≤x<100

    5

    0.25

    合计

    20

    1

    b.七年级学生竞赛成绩数据在这一组的是:

    80   80   82   85   85   85   89

    c.七、八两年级竞赛成绩数据的平均数、中位数、众数以及方差如下:

    年级

    平均数

    中位数

    众数

    方差

    七年级

    82.0

    n

    85

    109.9

    八年级

    82.4

    84

    85

    72.1

    根据以上信息,回答下列问题:

    1. (1) 写出表中m,n的值:m=,n=;八年级学生竞赛成绩扇形统计图中,表示这组数据的扇形圆心角的度数是°;
    2. (2) 在此次竞赛中,竞赛成绩更好的是(填“七”或“八”)年级,理由为
    3. (3) 竞赛成绩90分及以上记为优秀,该校七、八年级各有200名学生,估计这两个年级成绩优秀的学生共约人.
  • 26. (2022·石景山模拟) 在平面直角坐标xOy中,点在抛物线上.
    1. (1) 求抛物线的对称轴;
    2. (2) 抛物线上两点 , 且

      ①当时,比较的大小关系,并说明理由;

      ②若对于 , 都有 , 直接写出t的取值范围.

  • 27. (2022·石景山模拟) 如图,△ACB中, , D为边BC上一点(不与点C重合), , 点E在AD的延长线上,且 , 连接BE,过点B作BE的垂线,交边AC于点F.

    1. (1) 依题意补全图形;
    2. (2) 求证:
    3. (3) 用等式表示线段AF与CD的数量关系,并证明.
  • 28. (2022·石景山模拟) 在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x轴的对称点为P1 , 点P关于y轴的对称点为P2 , 称△P1PP2为点P的“关联三角形”.

    1. (1) 已知点A(1,2),求点A的“关联三角形”的面积;
    2. (2) 如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T有公共点,直接写出m的取值范围;
    3. (3) 已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.

微信扫码预览、分享更方便

试卷信息