当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

天津市津南区2022年九年级中考一模数学试卷

更新时间:2024-07-13 浏览次数:66 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 18. (2022·津南模拟) 如图,在每个小正方形的边长为1的网格中,线段的端点A,B均落在格点上.

    (Ⅰ)线段的长等于      ▲ 

    (Ⅱ)经过点A,B的圆交网格线于点 , 在上有一点 , 满足 , 请用无刻度的直尺,在如图所示的网格中,画出点 , 并简要说明点的位置是如何找到的(不要求证明)      ▲ 

  • 19. (2022·津南模拟) 解不等式组.

    请结合题意填空,完成本题的解答.

    1. (1) 解不等式①,得
    2. (2) 解不等式②,得
    3. (3) 把不等式①和②的解集在数轴上表示出来

    4. (4) 原不等式组的解集为.
  • 20. (2022·津南模拟) 某中学为了增强学生勤俭节约的意识,随机调查了本校部分学生每人一周的零花钱数额(单位:元).根据调查结果,绘制出如下的统计图①和图②.

    请根据相关信息,解答下列问题:

    1. (1) 本次接受调查的学生人数为,图①中m的值为
    2. (2) 求统计的这组学生零花钱数据的平均数、众数和中位数;
    3. (3) 全校共有1000名学生,请估算全校学生一周的零花钱共多少元?
  • 21. (2022·津南模拟) 已知△ABC内接于⊙O,AB为⊙O的直径,弦CD与AB相交于点E,∠BAC=36°.

     

    1. (1) 如图①,若CD平分∠ACB,连接BD,求∠ABC和∠CBD的大小;
    2. (2) 如图②,过点D作⊙O的切线,与AB的延长线交于点P,若AE=AC,求∠P的大小.
  • 22. (2022·津南模拟) 如图,甲乙两楼的水平距离为 , 自乙楼楼顶处,测得甲楼顶端处的仰角为 , 测得甲楼底部处的俯角为 , 求甲楼的高度.(结果取整数)参考数据:取1.73.

  • 23. (2022八下·罗定期末) 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.

    小明在练习操控航拍无人机,该型号无人机在上升和下降的速度相同,设无人机的飞行高度 , 小明操控无人机的时间 , 给出的图象反映了这个过程中之间的对应关系.

    请根据相关信息,解答下列问题:

    1. (1) 填表:

      无人机飞行的时间/

      0.5

      1.5

      3

      5

      7

      无人机飞行的高度/

      10

      40

    2. (2) 填空:

      ①无人机上升的速度为

      ②无人机在第分钟开始下降的;

    3. (3) 当时,请直接写出关于的函数解析式;
    4. (4) 当无人机距高地面的高度为时,直接写出的值.
  • 24. (2022·津南模拟) 将一个等腰直角三角形纸片放置在平面直角坐标系中,点 , 点 , 点在第一象限, , 点在边上(点不与点重合).

    1. (1) 如图①,当时,求点的坐标;
    2. (2) 折叠该纸片,使折痕所在的直线经过点 , 并垂直于轴的正半轴,垂足为 , 点的对应点为 , 设

      ①如图②,若折叠后重叠部分为四边形,与边相交于点 , 试用含有的式子表示四边形的面积 , 并直接写出的取值范围;

      ②若折叠后重叠部分的面积为 , 当时,求的取值范围(直接写出结果即可).

  • 25. (2022·津南模拟) 已知抛物线为常数,)的顶点为 , 与轴交于点
    1. (1) 当时,求顶点的坐标;
    2. (2) 直线与抛物线交于两点(点轴的右侧).

      ①若 , 求的值;

      ②设两点间抛物线上的一个动点(含端点).过点 , 垂足为 , 若线段长的最大值为5,求的值.

微信扫码预览、分享更方便

试卷信息