当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省常州市2021-2022学年高二下学期数学期末考试试卷

更新时间:2024-11-07 浏览次数:57 类型:期末考试
一、单选题
二、多选题
  • 9. (2022高二下·常州期末) 北京冬奥会成功举办后,大众对冰雪运动关注度不断上升,为研究市民对冰雪运动的喜好是否和性别有关,某校学生社团对市民进行了一次抽样调查,得到列联表如下:

    冰雪运动的喜好

    性别

    合计

    男性

    女性

    喜欢

    140

    m

    140+m

    不喜欢

    n

    80

    80+n

    合计

    140+n

    80+m

    220+m+n

    若男性喜欢冰雪运动的人数占男性人数 , 女性喜欢冰雪运动的人数占女性人数 , 则(   )

    A . 列联表中n的值为60,m的值为120 B . 随机对一位路人进行调查,有95%的可能性对方喜欢冰雪运动 C . 有95%的把握认为市民对冰雪运动的喜好和性别有关 D . 没有99%的把握认为市民对冰雪运动的喜好和性别有关
  • 10. (2022高二下·常州期末) 已知Sn是等差数列{an}的前n项和,且S5<S6 , S6=S7 , S7>S8 , 则(   )
    A . S5<S9 B . 该数列的公差d<0 C . a7=0 D . S11<0
  • 11. (2022高二下·常州期末) 盒子里有形状大小都相同的4个球,其中2个红球、2个白球,从中先后不放回地任取2个球,每次取1个.设“两个球颜色相同”为事件A,“两个球颜色不同”为事件B,“第1次取出的是红球”为事件C,“第2次取出的是红球”为事件D.则(   )
    A . A与B互为对立事件 B . A与C相互独立 C . C与D互斥 D . B与C相互独立
  • 12. (2022高二下·常州期末) 已知正四棱锥P-ABCD的棱长均为1,O为底面ABCD的中心,M,N分别是棱PA,PB的中点,则(   )
    A . PA⊥OM B . 直线AP与平面OMN所成的角的余弦值为 C . 平面OMN∥平面PCD D . 四棱锥P-ABCD的外接球的体积为
三、填空题
四、解答题
  • 17. (2022高二下·常州期末) 已知正整数n≥2,(x+3)n的展开式为anxn++…+a1x+a0
    1. (1) 若(x+3)n的展开式中,各项系数之和比二项式系数之和大992,求n的值;
    2. (2) 若n=2022,且ak是an,an1 , …,a1 , a0中的最大值,求正整数k的值.
  • 18. (2022高二下·常州期末) 已知数列满足a1=3,a2=5,且 , n∈N*.
    1. (1) 设bn=an1-an,求证:数列是等比数列;
    2. (2) 若数列{an}满足(n∈N*),求实数m的取值范围.
  • 19. (2022高二下·常州期末) 小李准备在某商场租一间商铺开服装店,为了解市场行情,在该商场调查了20家服装店,统计得到了它们的面积x(单位:m2)和日均客流量y(单位:百人)的数据(xi,yi)(i=1,2,…,20),并计算得=2400,=220,=42000,=8400.

    附:在线性回归方程ŷ=x中, , 其中为样本平均值.

    1. (1) 求y关于x的回归直线方程;
    2. (2) 已知服装店每天的经济效益W=k+mx(k>0,m>0),该商场现有80~170 m2的商铺出租,根据(1)的结果进行预测,要使单位面积的经济效益Z最高,小李应该租多大面积的商铺?
  • 20. (2022高二下·常州期末) 已知数列的前项和为 , 且
    1. (1) 求 , 并求数列的通项公式;
    2. (2) 若数列满足 , 求数列项的和
  • 21. (2022高二下·常州期末) 小李下班后驾车回家的路线有两条.路线1经过三个红绿灯路口,每个路口遇到红灯的概率都是;路线2经过两个红绿灯路口,第一个路口遇到红灯的概率是 , 第二个路口遇到红灯的概率是 . 假设两条路线全程绿灯时的驾车回家时长相同,且每个红绿灯路口是否遇到红灯相互独立.
    1. (1) 若小李下班后选择路线1驾车回家,求至少遇到一个红灯的概率.
    2. (2) 假设每遇到一个红灯驾车回家时长就会增加1min,为使小李下班后驾车回家时长的累计增加时间(单位:min)的期望最小,小李应选择哪条路线?请说明理由.
  • 22. (2022高二下·常州期末) 如图,在三棱柱ABC-A1B1C1中,四边形ABB1A1为正方形,四边形AA1C1C为菱形,且∠AA1C=60°,平面AA1C1C⊥平面ABB1A1 , 点D为棱BB1的中点.

    1. (1) 求证:AA1⊥CD;
    2. (2) 棱B1C1(除两端点外)上是否存在点M,使得二面角B-A1M-B1的余弦值为?若存在,请指出点M的位置;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息