当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省衢州市2022年中考数学试卷

更新时间:2022-09-05 浏览次数:778 类型:中考真卷
一、选择题(本题共有10小题,每小题3分,共30分)
二、填空题(本题共有6小题,每小题4分,共24分)
三、解答题(本题共有8小题,第17~19小题每小题6分,第20~21小题每小题8分,第22~23小题每小题10分,第24小题12分,共66分,请务必写出解答过程)
    1. (1) 因式分解:
    2. (2) 化简:
  • 19. (2024九下·杭州月考) 如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.

    1. (1) 在图1中画一条线段垂直AB.
    2. (2) 在图2中画一条线段平分AB.
  • 20. (2023九上·丰城月考) 如图,C,D是以AB为直径的半圆上的两点, , 连结BC,CD.

    1. (1) 求证:
    2. (2) 若 , 求阴影部分的面积.
  • 21. (2022·衢州) 【新知学习】在气象学上,“入夏”由两种平均气温与22℃比较来判断:

    衢州市2021年5月5日~5月14日的两种平均气温统计表 (单位:℃)

    注:“五天滑动平均气温”指某一天及其前后各两天的日平均气温的平均数,如:

    (℃).

    已知2021年的从5月8日起首次连续五天大于或等于22℃,而对应着~ , 其中第一个大于或等于22℃的是 , 则5月7日即为我市2021年的“入夏日”.

    【新知应用】已知我市2022年的“入夏日”为下图中的某一天,请根据信息解决问题:

    衢州市2022年5月24日~6月2日的两种平均气温折线统计图

    1. (1) 求2022年的.
    2. (2) 写出从哪天开始,图中的连续五天都大于或等于22℃.并判断今年的“入夏日”.
    3. (3) 某媒体报道:“夏天姗姗来迟,衢州2022年的春天比去年长.”你认为这样的说法正确吗?为什么?(我市2021年和2022年的入春时间分别是2月1日和2月27日)
  • 22. (2022·衢州) 金师傅近期准备换车,看中了价格相同的两款国产车.

    1. (1) 用含a的代数式表示新能源车的每千米行驶费用.
    2. (2) 若燃油车的每千米行驶费用比新能源车多0.54元.

      ①分别求出这两款车的每千米行驶费用.

      ②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)

  • 23. (2022·衢州) 如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度从D点滑出,运动轨迹近似抛物线 . 某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.

    (参考数据:

    1. (1) 求线段CE的函数表达式(写出的取值范围).
    2. (2) 当时,着陆点为P,求P的横坐标并判断成绩是否达标.
    3. (3) 在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与 的对应数据,在平面直角坐标系中描点如图3.

      ①猜想a关于的函数类型,求函数表达式,并任选一对对应值验证.

      ②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?

  • 24. (2022·衢州) 如图,在菱形ABCD中,AB=5,BD为对角线.点E是边AB延长线上的任意一点,连结DE交BC于点F,BG平分∠CBE交DE于点G.

    1. (1) 求证:.
    2. (2) 若

      ①求菱形的面积.

      ②求的值.

    3. (3) 若 , 当的大小发生变化时(),在AE上找一点T,使GT为定值,说明理由并求出ET的值.

微信扫码预览、分享更方便

试卷信息