①三边对应成比例的两个三角形相似;②两边对应成比例,且有一个角对应相等的两个三角形相似;③一个锐角对应相等的两个直角三角形相似;④一个角对应相等的两个等腰三角形相似.
其中正确的命题有( )
①如图2,当与重合时,连接 , 若 , 求的长;
②如图3,当时,连接并延长交直线l于点F,连接.求证:.
【作业】如图①,直线 , 与的面积相等吗?为什么?
解:相等.理由如下:
设与之间的距离为 , 则 , .
∴ .
【探究】
证明:∵ ▲
▲
▲
证明:过点作 , 垂足为 , 过点作 , 垂足为 , 则 ,
∴ ▲ .
∴ ▲ .
∴ .
由【探究】(1)可知 ▲ ,
∴ .
2.如图,在正方形ABCD中,.求证:. 证明:设CE与DF交于点O, ∵四边形ABCD是正方形, ∴ , . ∴. ∵ , ∴. ∴. ∴. ∴. ∴. |
某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究