当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023年春季北师版数学九年级下册总复习检测A

更新时间:2023-06-25 浏览次数:161 类型:期末考试
一、单选题(每题3分,共30分)
二、填空题(每空3分,共18分)
三、解答题(共9题,共72分)
  • 18. (2022·湘西) 计算:﹣2tan45°+|﹣3|+(π﹣2022)0
  • 19. (2023九上·丰城月考) 如图,C,D是以AB为直径的半圆上的两点, , 连结BC,CD.

    1. (1) 求证:
    2. (2) 若 , 求阴影部分的面积.
  • 20. (2022·安顺) 随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡上有一建成的5G基站塔 , 小明在坡脚处测得塔顶的仰角为 , 然后他沿坡面行走了50米到达处,处离地平面的距离为30米且在处测得塔顶的仰角 . (点均在同一平面内,为地平线)(参考数据:

    1. (1) 求坡面的坡度;
    2. (2) 求基站塔的高.
  • 21. (2022·巴中) 四边形内接于 , 直径与弦交于点 , 直线相切于点

    1. (1) 如图1,若 , 且 , 求证:平分
    2. (2) 如图2,连接 , 若 , 求证:
  • 22. (2022·黄石) 某校为配合疫情防控需要,每星期组织学生进行核酸抽样检测;防疫部门为了解学生错峰进入操场进行核酸检测情况,调查了某天上午学生进入操场的累计人数y(单位:人)与时间x(单位:分钟)的变化情况,发现其变化规律符合函数关系式:数据如下表.

    时间x(分钟)

    0

    1

    2

    3

    8

    累计人数y(人)

    0

    150

    280

    390

    640

    640

    1. (1) 求a,b,c的值;
    2. (2) 如果学生一进入操场就开始排队进行核酸检测,检测点有4个,每个检测点每分钟检测5人,求排队人数的最大值(排队人数-累计人数-已检测人数);
    3. (3) 在(2)的条件下,全部学生都完成核酸检测需要多少时间?如果要在不超过20分钟让全部学生完成核酸检测,从一开始就应该至少增加几个检测点?
  • 23. (2022·衢州) 如图1为北京冬奥会“雪飞天”滑雪大跳台赛道的横截面示意图.取水平线OE为x轴,铅垂线OD为y轴,建立平面直角坐标系.运动员以速度从D点滑出,运动轨迹近似抛物线 . 某运动员7次试跳的轨迹如图2.在着陆坡CE上设置点K(与DO相距32m)作为标准点,着陆点在K点或超过K点视为成绩达标.

    (参考数据:

    1. (1) 求线段CE的函数表达式(写出的取值范围).
    2. (2) 当时,着陆点为P,求P的横坐标并判断成绩是否达标.
    3. (3) 在试跳中发现运动轨迹与滑出速度v的大小有关,进一步探究,测算得7组a与 的对应数据,在平面直角坐标系中描点如图3.

      ①猜想a关于的函数类型,求函数表达式,并任选一对对应值验证.

      ②当v为多少m/s时,运动员的成绩恰能达标(精确到1m/s)?

  • 24. (2023九上·永嘉期末) 操作探究题
    1. (1) 已知是半圆的直径,是正整数,且不是3的倍数)是半圆的一个圆心角.

      操作:如图1,分别将半圆的圆心角取1、4、5、10)所对的弧三等分(要求:仅用圆规作图,不写作法,保留作图痕迹);

      交流:当时,可以仅用圆规将半圆的圆心角所对的弧三等分吗?

      探究:你认为当满足什么条件时,就可以仅用圆规将半圆的圆心角所对的弧三等分?说说你的理由.

    2. (2) 如图2,的圆周角 . 为了将这个圆的圆周14等分,请作出它的一条14等分弧(要求:仅用圆规作图,不写作法,保留作图痕迹).

  • 25. (2022·黔西) 如图,在平面直角坐标系中,经过点的直线AB与y轴交于点 . 经过原点O的抛物线交直线AB于点A,C,抛物线的顶点为D.

    1. (1) 求抛物线的表达式;
    2. (2) M是线段AB上一点,N是抛物线上一点,当轴且时,求点M的坐标;
    3. (3) P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息