①在一次函数的图象中,的值随着值的增大而增大;②方程组的解为;③方程的解为;④当时,.
其中结论正确的个数是( )
一般地,一个二元一次方程的解有无数个,且每个解都指满足方程的一对数值,而不是指单独的一个未知数的值.例如:二元一次方程的解有 , , ……
在平面直角坐标系中(如图),我们标出以这个方程的解为坐标的一些点(其中的值为横坐标,的值为纵坐标),如 , , ……就会发现如果将这些点连起来正好是一条直线,也就是说这些点都在同一条直线上;反过来,在这条直线上任意选取一点,比如 , 将这个点的坐标作为一对未知数的值即代入方程中,发现它即为该方程的一个解.这样,二元一次方程的所有解与这条直线上的所有点就建立了一一对应关系,我们把这条直线就叫做方程的图象.一般地,任意二元一次方程解的对应点连成的直线就叫这个方程的图象.请问:
电瓶车 |
公交车 |
货车 |
小轿车 |
合计(车流总量) |
|
(第一时段)8:50~9:00 |
m |
86 |
161 |
||
(第二时段)9:00~9:10 |
7n |
m |
n |
99 |
|
合计 |
30 |
185 |
①求m,n的值。
②因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶年,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?
我们知道,二元一次方程有无数个解,在平面直角坐标系中,我们标出以这个方程的解为坐标的点,就会发现这些点在同一条直线上.例如是方程的一个解,对应点 , 如图所示,我们在平面直角坐标系中将其标出,另外方程的解还有对应点 , , , , 将这些点连起来正是一条直线,反过来,在这条直线上任取一点,这个点的坐标也是方程的解.所以,我们就把这条直线就叫做方程的图象.一般的,以任意二元一次方程解为坐标的对应点连成的直线就叫这个方程的图象.请问:
试题篮
0