当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

贵州省黔南布依族苗族自治州长顺县2022-2023学年九年级...

更新时间:2024-07-13 浏览次数:78 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2022九上·长顺期末) 用适当的方法解下列方程:
    1. (1)
    2. (2)
  • 18. (2022九上·长顺期末) 如图,小方格都是边长为1的正方形,是以点为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

    1. (1) 画出位似中心点
    2. (2) 求出的周长比与面积比.
  • 19. (2022九上·长顺期末) 2021年是中国共产党成立100周年,为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:

    甲班15名学员测试成绩(满分100分)统计如下:

    87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.

    乙班15名学员测试成绩(满分100分)统计如下:

    77,88,92,85,76,90,76,91,88,81,85,88,98,86,89.

    1. (1) 按如下分数段整理两班测试成绩

      班级

      70.5~75.5

      75.5~80.5

      80.5~85.5

      85.5~90.5

      90.5~95.5

      95.5~100.5

      1

      2

      a

      5

      1

      2

      0

      3

      3

      6

      2

      1

      表中

    2. (2) 补全甲班15名学员测试成绩的频数分布直方图;

    3. (3) 两班测试成绩的平均数、众数、中位数、方差如表所示:

      班级

      平均数

      众数

      中位数

      方差

      86

      86

      44.8

      86

      88

      y

      36.7

      表中

    4. (4) 以上两个班级学员掌握党史相关知识的整体水平较好的是班;
    5. (5) 本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.
  • 20. (2022九上·长顺期末) 如图,在正方形ABCD中,点E、F、G 分别在AB、BC、CD上,且 于F.

    1. (1) 求证:△BEF∽△CFG;
    2. (2) 若AB=12,AE=3,CF=4,求CG的长.
  • 21. (2022九上·长顺期末) 如图,已知一次函数 的图象与反比例函数 的图象交于点A(-1,2)和点B.

    1. (1) 求b和k的值;
    2. (2) 请求出点B的坐标,并观察图象,直接写出关于x的不等式 的解集;
    3. (3) 若点P在y轴上一点,当 最小时,求点P的坐标.
  • 22. (2022九上·长顺期末) 某蔬菜生产基地在气温较低时用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后大棚内的温度随时间(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:

    1. (1) 恒温系统在这天保持大棚内的温度的时间有小时;
    2. (2)
    3. (3) 当棚内温度不低于时,该蔬菜能够快速生长,则这天该蔬菜能够快速生长小时.
  • 23. (2022九上·长顺期末) 如图,⊙O中的弦AC、BD相交于点E.

    1. (1) 求证:AE•CE=BE•DE;
    2. (2) 若AE=4,CE=3,BD=8,求线段BE的长.
  • 24. (2022九上·长顺期末) 数学课上,王老师出示问题:如图1,将边长为5的正方形纸片折叠,使顶点落在边上的点处(点不重合),折痕为 , 折叠后边落在的位置,交于点.

    1. (1) 观察操作结果,在图1中找到一个与相似的三角形,并证明你的结论;
    2. (2) 当点在边的什么位置时,面积的比是?请写出求解过程;
    3. (3) 将正方形换成正三角形,如图2,将边长为5的正三角形纸片折叠,使顶点落在边上的点处(点不重合),折痕为 , 当点在边的什么位置时,△BEP与△CPF面积的比是9∶25?请写出求解过程.
  • 25. (2022九上·长顺期末) 若抛物线 与直线 轴于同一点,且抛物线的顶点在直线 上,称该抛物线与直线互为“伙伴函数”,直线的伙伴函数表达式不唯一.
    1. (1) 求抛物线 的“伙伴函数”表达式;
    2. (2) 若直线 与抛物线 互为“伙伴函数”,求m与c的值;
    3. (3) 设互为“伙伴函数”的抛物线顶点坐标为 ,它的一个“伙伴函数”表达式为 ,求该抛物线表达式,并确定在 范围内该函数的最大值.

微信扫码预览、分享更方便

试卷信息