当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省南充市顺庆区2022-2023学年九年级上学期摸底数学...

更新时间:2023-01-30 浏览次数:66 类型:月考试卷
一、选择题:本大题共10个小题,每小题4分,共40分.
二、填空题:本大题共6小题,每小题4分,共24分.
三、解答题:本大题共9个小题,共86分。.
    1. (1) (x-3)(x+7)=-16;
    2. (2) x2-1=x.
  • 18. (2022九上·顺庆月考) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,BC,BD.若CD=2OE,求∠A和∠CBD的度数.

  • 19. (2022九上·顺庆月考) 为了解某校学生上学的主要交通方式,校学生会设计了一份调查问卷,对该校部分学生进行了随机抽样调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选,并将调查结果绘制成如下条形统计图.经统计,接受调查的同学中“骑自行车”的人数所占的百分比是15%.根据以上信息,解答下列问题:

    1. (1) 本次接受调查的总人数是人,并把条形统计图补充完整;
    2. (2) 若绘制扇形统计图,则“乘公交车”的人数所占的百分比是 ,“步行”选项所在扇形的圆心角度数是
    3. (3) 如果该校有学生3000人,请你求出该校学生大约多少人乘私家车上学.
  • 20. (2022九上·顺庆月考) 关于x的一元二次方程为mx2-(1+2m)x+m+1=0(m≠0).
    1. (1) 求证:方程总有两个不等实数根;
    2. (2) 若方程的两根为x1、x2 , 是否存在x12+x22=x1x2?如果存在,请求m的值;如果不存在,请说明理由.
  • 21. (2022九上·顺庆月考) 如图,已知抛物线y=ax2+bx+5(a≠0)的顶点为P(-3,-4).

    1. (1) 求抛物线的解析式;
    2. (2) 抛物线与x轴交于点A,B,与y轴交于点C,求△ABC的面积.
  • 22. (2022九上·顺庆月考) 如图,在△ABC中,∠BAC=90°,以点A为圆心作⊙A与BC相切于D,交AB于点F,在BC上取点E,使CE=AC,连接EA,EF.

    1. (1) 求证:EF是⊙A的切线;
    2. (2) 若BE=5,EF=4,求点C到EA的距离.
  • 23. (2022九上·顺庆月考) 某运动器材批发市场销售一种篮球,每个篮球进价为50元,规定每个篮球的售价不低于进价,经市场调查,每月的销售量y(个)与每个篮球的售价x(元)满足一次函数关系,部分数据如下表:

    售价x

    60

    62

    64

    销售量y

    500

    480

    460

    1. (1) 求y与x之间的函数关系式;(不需求自变量x的取值范围)
    2. (2) 该批发市场每月想从这种篮球销售中获利8000元,又想尽量多给客户实惠,应如何给这种篮球定价?
    3. (3) 物价部门规定,该篮球的每个利润不允许高于进货价的50%,设销售这种篮球每月的总利润为w(元),那么销售单价定为多少元可获得最大利润?最大利润是多少?
  • 24. (2022九上·顺庆月考) 如图,在正方形ABCD中,E是边CD上的一点,F是BD上的一点,且FE=FC.

    1. (1) 请你判断FE是否可以由FA旋转得到,如果可以,请说明旋转方向和角度并证明;如果不可以,请说明理由;
    2. (2) 若正方形的边长为6+6,∠BAF=30°.

      (i)求AF的长度;

      (ii)若AE与BD交于点G,求AG的长度.

  • 25. (2022九上·顺庆月考) 如图,已知抛物线与x轴交于点A,B;与y轴交于点C,且OC=OB=2OA,对称轴为直线x=1.

    1. (1) 求抛物线的解析式.
    2. (2) 若点M,N分别是线段AC,BC上的点,且MN∥AB,当MN=2时,求点M,N的坐标.
    3. (3) D是抛物线的顶点,在抛物线上是否存在不与点D重合的点E,使得△BCE与△BCD的面积相等?若存在,请求点E的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息