当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济宁市金乡县2022年中考三模数学试题

更新时间:2023-04-28 浏览次数:64 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 16. (2022·金乡县模拟) 先化简,再求值: , 其中x=-1.
  • 17. (2022·金乡县模拟) 用圆规、直尺作图,不写作法,但要保留作图痕迹.

    已知:线段a和

    1. (1) 求作:菱形ABCD,使菱形ABCD的边长为a,其中一个内角等于
    2. (2) 若菱形ABCD的边长cm, , 则此菱形ABCD的面积为cm2
  • 18. (2022·金乡县模拟) 某中学为检验思想政治课的学习效果,对八年级学生进行“社会主义核心价值观”知识测试(满分100分),随机抽取部分学生的测试成绩进行统计,并将统计结果绘制成如下尚不完整的统计图表:

    测试成绩频数分布表

    组别

    成绩分组

    频数

    频率

    A

    50≤x<60

    4

    0.1

    B

    60≤x<70

    10

    0.25

    C

    70≤x<80

    m

    n

    D

    80≤x<90

    8

    0.2

    E

    90≤x≤100

    6

    0.15

    根据以上信息解答下列问题:

    1. (1) 填空:m=,n=
    2. (2) 补全频数分布直方图.
    3. (3) 若要画出该组数据的扇形统计图,请计算C组所在扇形的圆心角度数为
    4. (4) 学校计划对测试成绩达到80分及以上的同学进行表彰,若该校共有400人参加此次知识测试,请估计受到表彰的学生人数.
  • 19. (2022·金乡县模拟) 已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.

    1. (1) 如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数:
    2. (2) 如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;
    3. (3) 若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示),
  • 20. (2022·金乡县模拟) 甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:

    1. (1) 货车的速度是 km/h,B点坐标为
    2. (2) 在轿车行驶过程中,轿车行驶多长时间两车相遇?
    3. (3) 直接写出:在行驶过程中,货车行驶多长时间,两车相距15千米?
  • 21. (2022·金乡县模拟) 如图1,线段AB,CD交于点O,连接AC和BD,若∠A与∠B,∠C与∠D中有一组内错角成两倍关系,则称为倍优三角形,其中成两倍关系的内错角中,较大的角称为倍优角.

    1. (1) 如图2,在四边形ABCD中,对角线AC,BD交于点O,已知为等边三角形.求证:为倍优三角形.
    2. (2) 如图3,已知边长为2的正方形ABCD,点P为边CD上一动点(不与点C,D重合),连接AP和BP,对角线AC和BP交于点O,当为倍优三角形时,求:∠DAP的正切值.
    3. (3) 如图4,四边形ABCD内接于是倍优三角形,且∠ADP为倍优角,延长AD,BC交于点E.若 , 求的半径.
  • 22. (2022·金乡县模拟) 如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).

    1. (1) 求抛物线的解析式.
    2. (2) 设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.

      ①当∠DPH=∠CAD时,求t的值;

      ②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息