当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山西省晋城市泽州县2023年中考一模数学试卷

更新时间:2024-07-13 浏览次数:70 类型:中考模拟
一、单选题
二、填空题
  • 12. 全世界大约有14000余种蝴蝶,大部分分布在美洲,尤其在亚马孙河流域品种最多,在世界其他地区除了南北极寒冷地带以外都有分布.如图是一只蝴蝶标本,将其放在适当的平面直角坐标系中,若翅膀两端B,C两点的坐标分别为 , 则蝴蝶“尾部”点A的坐标为

  • 13. (2023·泽州模拟) 如图,在平行四边形中,对角线相交于点 , 点上,且 , 连接 . 若添加一个条件使四边形是矩形,则该条件可以是.(填写一个即可)

  • 14. (2023·泽州模拟) 山西省宁武县被命名为“中国高原莜麦之乡”.莜麦是世界公认的营养价值很高的粮种之一,对预防和治疗高血压、糖尿病等多种疾病,促进新陈代谢有明显功效.某莜麦标准化种植基地在改良前种植总产量可以达到 , 经过改良后,平均每亩产量是原来的1.5倍.若改良后种植总产量不变,但种植亩数减少25亩,求改良前平均每亩的产量.若设改良前平均每亩的产量为 , 则可列方程为

  • 15. (2023·泽州模拟) 如图,先将矩形纸片沿其对角线折叠,再沿着的垂直平分线继续折叠,使点B与点C重合.若 , 则折痕的长为

三、解答题
    1. (1) 计算:
    2. (2) 先化简,再求值: , 其中
  • 17. (2023·泽州模拟) 如图,在菱形中,E,F分别是边上的点,连接 , 且 . 求证:

  • 18. (2023·泽州模拟) 下面是小亮同学在数学杂志上看到的小片段,请仔细阅读并完成相应的任务.

    一元二次方程根与系数的关系

    通过学习用公式法解一元二次方程可以发现,一元二次方程的根完全由它的系数确定,求根公式就是根与系数关系的一种形式.除此以外,一元二次方程的根与系数之间还有一些其他形式的关系.

    从因式分解的角度思考这个问题,若把一元二次方程的两个实数根分别记为 , 则有恒等式 , 即 . 比较两边系数可得:____,____.

    任务:

    1. (1) 填空:
    2. (2) 小亮同学利用求根公式进行推理,同样能够得出一元二次方程两根之和、两根之积与系数之间的关系.下面是小亮同学的部分推理过程,请完成填空,

      并补全推理过程.

      解:对于一元二次方程

      时,有两个实数根  ▲    ▲  

      ……

    3. (3) 方程的两根之和为,两根之积为
  • 19. (2023·泽州模拟) 寒潮是一种灾害性天气,一般是冬半年(10月——次年3月)的寒冷空气向某地侵袭,造成大范围急剧降温、大风和雨雪天气,若能使该地的温度在一天内降低以上,且最低气温在以下,则将这股冷空气叫作寒潮.下面是我国年中央气象台发布寒潮预警次数逐月分布条形统计图和扇形统计图(不完整):

    请根据上述信息,解答下列问题:

    1. (1) 年中央气象台共发布寒潮预警  ▲  次;将条形统计图补充完整.
    2. (2) 分析近12年中央气象台发布的寒潮预警的特点.
    3. (3) 小李同学对寒潮预警很感兴趣,她查阅资料发现2010年发布了新的《中央气象台气象灾害预警发布办法》,但是部分省市根据自己的特点继续沿用2007年的气象灾害预警办法.她收集了2007年中央气象台寒潮预警发布标准中四种寒潮预警信号的卡片(除内容外,其余完全相同),分别为红色预警、橙色预警、黄色预警、蓝色预警.将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,放回洗匀后,再从中随机抽取一张.请用列表或画树状图的方法,求抽到的两张卡片恰好是红色预警和橙色预警的概率.

  • 20. (2023·泽州模拟) 便捷的交通为经济发展提供了更好的保障,桥梁作为公路的咽喉,左右着公路的生命.通过对桥梁的试验监测,可以了解其使用性能和承载能力,同时也为桥梁的养护、加固和安全使用提供可靠的资料.某综合与实践活动小组对其自制的桥梁模型的承重开展了项目化学习活动,下面是此活动的设计方案.

    项目主题

    桥梁模型的承重试验

    活动目标

    经历项目化学习的全过程,引导学生在实际情境中发现问题,并将其转化为合理的数学问题

    驱动问题

    当桥梁模型发生不同程度的形变时,水桶下降的高度

    方案设计

    工具

    桥梁模型、量角器、卷尺、水桶、水杯、绳子、挂钩等

    实物图展示

    示意图

    状态一(空水桶)

    状态二(水桶内加一定量的水)

    说明:C为的中点

    请你参与该项目化学习活动,并完成下列问题:

    1. (1) 该综合与实践活动小组在设计桥梁模型时,选用了三角形结构作为设计单元,这样设计依据的数学原理是____.
      A . 三角形具有稳定性 B . 两点确定一条直线 C . 两点之间线段最短
    2. (2) 在水桶内加入一定量的水后,桥梁发生了如图2所示的形变.若其他因素忽略不计,测得 , 请计算此时水桶下降的高度 . (参考数据:
  • 21. (2023·泽州模拟) 2022年卡塔尔世界杯大幕落下,阿根廷球星梅西亲吻大力神杯的画面在亿万人心中定格,成为永恒,其中卡塔尔世界杯吉祥物拉伊卜和球星梅西的手办深受国内外广大朋友的喜爱.据了解,在某平台官方特许零售店购买3个拉伊卜手办和4个梅西手办需要1400元;购买1个拉伊卜手办和3个梅西手办需要900元.

    1. (1) 求该店销售拉伊卜手办和梅西手办的单价.
    2. (2) 该店在开始销售这两种手办的第一天就将库存全部售完,于是从厂家紧急调配商品,现拟租用甲、乙两种车共8辆.若每辆甲种车的租金为300元,每辆乙种车的租金为230元,乙种车不超过3辆.设租用甲种车m辆,总租金为w元,求w与m的函数关系式及总租金的最低费用.
  • 22. (2023·泽州模拟) 综合与实践:如图

    1. (1) 模型启迪:如图1,在中,D为边的中点,连接并延长至点H,使 , 连接 . 由 , 得 , 则的数量关系为,位置关系为
    2. (2) 模型探索:如图2,在中,平分 , D为边的中点,过点D作 , 交的延长线于点Q,交边于点K.试判断的数量关系,并说明理由.
    3. (3) 如图3,在中,D为边的中点,连接 , E为边上一点,过点E作于点G,连接于点F,且 . 求证:
    4. (4) 模型应用:如图4,在(3)的条件下,延长至点N,使 , 连接 , 交的延长线于点M.若 , 请直接写出线段的长.
  • 23. (2023·泽州模拟) 综合与探究

    如图1,在平面直角坐标系中,二次函数的图象与x轴交于A,B两点,与直线l交于B,C两点,其中点A的坐标为 , 点C的坐标为

    1. (1) 求二次函数的表达式和点B的坐标.
    2. (2) 若P为直线l上一点,Q为抛物线上一点,当四边形为平行四边形时,求点P的坐标.
    3. (3) 如图2,若抛物线与y轴交于点D,连接 , 抛物线上是否存在点M,使?若存在,请直接写出点M的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息