编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
身高/cm | 165 | 168 | 170 | 172 | 173 | 174 | 175 | 177 | 179 | 182 |
体重/kg | 55 | 89 | 61 | 65 | 67 | 70 | 75 | 75 | 78 | 80 |
由表中数据制作成如下所示的散点图:
由最小二乘法计算得到经验回归直线的方程为 , 相关系数为 , 决定系数为;经过残差分析确定为离群点(对应残差过大),把它去掉后,再用剩下的9组数据计算得到经验回归直线的方程为 , 相关系数为 , 决定系数为 . 则以下结论中正确的有( )
参考公式:直方图的方差 , 其中为各区间的中点,为各组的频率.
参考数据:若随机变量X服从正态分布 , 则 , (1)由频率分布直方图估计抽检样本关键指标的平均数和方差 . (用每组的中点代表该组的均值)
(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备.下面是某个生产周期中抽测的10个零件的关键指标:
0.8 | 1.2 | 0.95 | 1.01 | 1.23 | 1.12 | 1.33 | 0.97 | 1.21 | 0.83 |
利用和判断该生产周期是否需停止生产并检查设备.
(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望.
, , , .