如图,点G,D,F共线,且 , , 求证:.
证明:∵ , (已知),
∴( ),
∴( ).
∴( ).
∵ ,
∴( ).
∴( ).
∴( ).
∵( ).
∴( ).
A型机器人/个 |
B型机器人/个 |
运输物品总数/件 |
|
第一批 |
2 |
5 |
34 |
第二批 |
4 |
3 |
26 |
问:每个型机器人和型机器人分别可以运输物品多少件?
在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法。如:
例1、分解因式:x4+4y4
解:原式=x4+4y4=x4+4x2y2+4y4-4x2y2
=(x2+2y2)2-4x2y2=(x2+2y2+2xy)(x2+2y2-2xy)
例2、分解因式:x3+5x-6
解:原式=x3-x+6x-6=x(x2-1)+6(x-1)=(x-1)(x2+x+6)
我们还可以通过拆项对多项式进行变形,如
例3、把多项式a2+b2+4a-6b+13写成A2+B2的形式.
解:原式=a2+4a+4+b2-6b+9=(a+2)2+(b-3)2
[知识应用]请根据以上材料中的方法,解决下列问题: